Cellular and Subcellular Localization of Endoplasmic Reticulum Chaperone GRP78 Following Transient Focal Cerebral Ischemia in Rats

  • Xuyan Jin
  • Dong Kyu Kim
  • Tae-Ryong Riew
  • Hong Lim Kim
  • Mun-Yong Lee
Original Paper
  • 37 Downloads

Abstract

The 78-kDa glucose-regulated protein (GRP78), a chaperone protein located in the endoplasmic reticulum (ER), has been reported to have neuroprotective effects in the injured central nervous system. Our aim was to examine the expression profiles and subcellular distributions of GRP78 and its association with the neuroglial reaction in the rat striatum after transient, focal cerebral ischemia. In sham-operated rats, constitutive, specific immunoreactivity for GRP78 was almost exclusively localized to the rough ER of striatal neurons, with none in the resting, ramified microglia or astrocytes. At 1 day post reperfusion, increased expression was observed in ischemia-resistant cholinergic interneurons, when most striatal neurons had lost GRP78 expression (this occurred earlier than the loss of other neuronal markers). By 3 days post reperfusion, GRP78 expression had re-emerged in association with the activation of glial cells in both infarct and peri-infarct areas but showed different patterns in the two regions. Most of the expression induced in the infarct area could be attributed to brain macrophages, while expression in the peri-infarct area predominantly occurred in neurons and reactive astrocytes. A gradual, sustained induction of GRP78 immunoreactivity occurred in reactive astrocytes localized to the astroglial scar, lasting for at least 28 days post reperfusion. Using correlative light- and electron-microscopy, we found conspicuous GRP78 protein localized to abnormally prominent, dilated rough ER in both glial cell types. Thus, our data indicate a link between GRP78 expression and the activated functional status of neuroglial cells, predominantly microglia/macrophages and astrocytes, occurring in response to ischemia-induced ER stress.

Keywords

78-KDa glucose-regulated protein Striatum Endoplasmic reticulum Stroke Neuron Glial cells 

Abbreviations

ANOVA

Analysis of variance

BiP

Immunoglobulin heavy-chain binding protein

ChAT

Choline acetyltransferase

CNS

Central nervous system

DAB

3,3′-diaminobenzidine tetrahydrochloride

DAPI

4′,6-diamidino-2-phenylindole

ER

Endoplasmic reticulum

GFAP

Glial fibrillary acidic protein

GRP78

78-kDa glucose-regulated protein

i.p.

Intraperitoneally

Iba1

Ionized calcium-binding adaptor molecule 1

MCA

Middle cerebral artery

MCAO

Middle cerebral artery occlusion

NeuN

Neuronal nuclear protein

PB

Phosphate buffer

SDS

Sodium dodecyl sulfate

SEM

Standard error of the mean

TUNEL

Terminal deoxynucleotidyl transferase dUTP nick end labelling

UPR

Unfolded protein response

Notes

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) [Grant Number NRF-2017R1A2B4002922].

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ouyang YB, Xu LJ, Emery JF, Lee AS, Giffard RG (2011) Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion 11:279–286.  https://doi.org/10.1016/j.mito.2010.10.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Bole DG, Dowin R, Doriaux M, Jamieson JD (1989) Immunocytochemical localization of BiP to the rough endoplasmic reticulum: evidence for protein sorting by selective retention. J Histochem Cytochem 37:1817–1823.  https://doi.org/10.1177/37.12.2685110 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu G, Lee AS (2015) Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J Cell Physiol 230:1413–1420.  https://doi.org/10.1002/jcp.24923 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Casas C (2017) GRP78 at the centre of the stage in cancer and neuroprotection. Front Neurosci 11:177.  https://doi.org/10.3389/fnins.2017.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510CrossRefPubMedGoogle Scholar
  6. 6.
    Qian Y, Zheng Y, Ramos KS, Tiffany-Castiglioni E (2005) GRP78 compartmentalized redistribution in Pb-treated glia: role of GRP78 in lead-induced oxidative stress. Neurotoxicology 26:267–275.  https://doi.org/10.1016/j.neuro.2004.09.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Ni M, Zhang Y, Lee AS (2011) Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 434:181–188.  https://doi.org/10.1042/bj20101569 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang LH, Yang XL, Zhang X, Cheng JX, Zhang W (2011) Association of elevated GRP78 expression with increased astrocytoma malignancy via Akt and ERK pathways. Brain Res 1371:23–31.  https://doi.org/10.1016/j.brainres.2010.11.063 CrossRefPubMedGoogle Scholar
  9. 9.
    Tsai YL, Zhang Y, Tseng CC, Stanciauskas R, Pinaud F, Lee AS (2015) Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J Biol Chem 290:8049–8064.  https://doi.org/10.1074/jbc.M114.618736 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang S, Longo FM, Chen J, Butman M, Graham SH, Haglid KG, Sharp FR (1993) Induction of glucose regulated protein (grp78) and inducible heat shock protein (hsp70) mRNAs in rat brain after kainic acid seizures and focal ischemia. Neurochem Int 23:575–582CrossRefPubMedGoogle Scholar
  11. 11.
    Chen J, Guo H, Zheng G, Shi ZN (2013) Region-specific vulnerability to endoplasmic reticulum stress-induced neuronal death in rat brain after status epilepticus. J Biosci 38:877–886CrossRefPubMedGoogle Scholar
  12. 12.
    Penas C, Guzman MS, Verdu E, Fores J, Navarro X, Casas C (2007) Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 102:1242–1255.  https://doi.org/10.1111/j.1471-4159.2007.04671.x CrossRefPubMedGoogle Scholar
  13. 13.
    Ohri SS, Maddie MA, Zhang Y, Shields CB, Hetman M, Whittemore SR (2012) Deletion of the pro-apoptotic endoplasmic reticulum stress response effector CHOP does not result in improved locomotor function after severe contusive spinal cord injury. J Neurotrauma 29:579–588.  https://doi.org/10.1089/neu.2011.1940 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Matsuyama D, Watanabe M, Suyama K, Kuroiwa M, Mochida J (2014) Endoplasmic reticulum stress response in the rat contusive spinal cord injury model-susceptibility in specific cell types. Spinal Cord 52:9–16.  https://doi.org/10.1038/sc.2013.118 CrossRefPubMedGoogle Scholar
  15. 15.
    Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X, Casas C (2011) Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 18:1617–1627.  https://doi.org/10.1038/cdd.2011.24 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhao Y, Yan Y, Zhao Z, Li S, Yin J (2015) The dynamic changes of endoplasmic reticulum stress pathway markers GRP78 and CHOP in the hippocampus of diabetic mice. Brain Res Bull 111:27–35.  https://doi.org/10.1016/j.brainresbull.2014.12.006 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu Q, Zhao D, Ji YX, Huang XY, Yang P, Wang YZ, Lei T (2016) Role of glucose-regulated protein 78 in early brain injury after experimental subarachnoid hemorrhage in rats. J Huazhong Univ Sci Technol Med Sci 36:168–173.  https://doi.org/10.1007/s11596-016-1561-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Aoki M, Tamatani M, Taniguchi M, Yamaguchi A, Bando Y, Kasai K, Miyoshi Y, Nakamura Y, Vitek MP, Tohyama M, Tanaka H, Sugimoto H (2001) Hypothermic treatment restores glucose regulated protein 78 (GRP78) expression in ischemic brain. Brain Res Mol Brain Res 95:117–128CrossRefPubMedGoogle Scholar
  19. 19.
    Ito D, Tanaka K, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y (2001) Up-regulation of the Ire1-mediated signaling molecule, Bip, in ischemic rat brain. Neuroreport 12:4023–4028CrossRefPubMedGoogle Scholar
  20. 20.
    Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J, Fukuuchi Y (2003) Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience 118:491–499CrossRefPubMedGoogle Scholar
  21. 21.
    Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11:403–415.  https://doi.org/10.1038/sj.cdd.4401365 CrossRefPubMedGoogle Scholar
  22. 22.
    Oida Y, Izuta H, Oyagi A, Shimazawa M, Kudo T, Imaizumi K, Hara H (2008) Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res 1208:217–224.  https://doi.org/10.1016/j.brainres.2008.02.068 CrossRefPubMedGoogle Scholar
  23. 23.
    Osada N, Kosuge Y, Ishige K, Ito Y (2010) Characterization of neuronal and astroglial responses to ER stress in the hippocampal CA1 area in mice following transient forebrain ischemia. Neurochem Int 57:1–7.  https://doi.org/10.1016/j.neuint.2010.03.017 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X, Ye LB, Xiao J (2015) Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol 51:1343–1352.  https://doi.org/10.1007/s12035-014-8813-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Ko SB, Ortega-Gutierrez S, Choi HA, Claassen J, Presciutti M, Schmidt JM, Badjatia N, Lee K, Mayer SA (2011) Status epilepticus-induced hyperemia and brain tissue hypoxia after cardiac arrest. Arch Neurol 68:1323–1326.  https://doi.org/10.1001/archneurol.2011.240 CrossRefPubMedGoogle Scholar
  26. 26.
    Fan H, Tang HB, Kang J, Shan L, Song H, Zhu K, Wang J, Ju G, Wang YZ (2015) Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience 311:362–373.  https://doi.org/10.1016/j.neuroscience.2015.10.049 CrossRefPubMedGoogle Scholar
  27. 27.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91CrossRefPubMedGoogle Scholar
  28. 28.
    Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New YorkGoogle Scholar
  29. 29.
    Oda Y, Nakanishi I (2000) The distribution of cholinergic neurons in the human central nervous system. Histol Histopathol 15:825–834PubMedGoogle Scholar
  30. 30.
    Mu S, Liu B, Ouyang L, Zhan M, Chen S, Wu J, Chen J, Wei X, Wang W, Zhang J, Lei W (2016) Characteristic changes of astrocyte and microglia in rat striatum induced by 3-NP and MCAO. Neurochem Res 41:707–714.  https://doi.org/10.1007/s11064-015-1739-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Wullner U, Young AB, Penney JB, Beal MF (1994) 3-Nitropropionic acid toxicity in the striatum. J Neurochem 63:1772–1781CrossRefPubMedGoogle Scholar
  32. 32.
    Duran-Vilaregut J, Del Valle J, Manich G, Junyent F, Camins A, Pallas M, Pelegri C, Vilaplana J (2010) Systemic administration of 3-nitropropionic acid points out a different role for active caspase-3 in neurons and astrocytes. Neurochem Int 56:443–450.  https://doi.org/10.1016/j.neuint.2009.12.001 CrossRefPubMedGoogle Scholar
  33. 33.
    Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397.  https://doi.org/10.1189/jlb.0303114 CrossRefPubMedGoogle Scholar
  34. 34.
    Kofler J, Wiley CA (2011) Microglia: key innate immune cells of the brain. Toxicol Pathol 39:103–114.  https://doi.org/10.1177/0192623310387619 CrossRefPubMedGoogle Scholar
  35. 35.
    Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105.  https://doi.org/10.1007/s00401-009-0622-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Shen Y, Sun A, Wang Y, Cha D, Wang H, Wang F, Feng L, Fang S, Shen Y (2012) Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation 9:254.  https://doi.org/10.1186/1742-2094-9-254 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang Y, Sun M, Shan Y, Zheng X, Ma H, Ma W, Wang Z, Pei X, Wang Y (2015) Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats. Reprod Sci 22:572–584.  https://doi.org/10.1177/1933719114553445 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Corsetti G, Romano C, Stacchiotti A, Pasini E, Dioguardi FS (2017) Endoplasmic reticulum stress and apoptosis triggered by sub-chronic lead exposure in mice spleen: a histopathological study. Biol Trace Elem Res 178:86–97.  https://doi.org/10.1007/s12011-016-0912-z CrossRefPubMedGoogle Scholar
  39. 39.
    Bai H, Li N, Zhou X, Wang C, Zhang Y, Zhu X, Huang M, Chen Y, Li X, Yang Q, Li C, Ben J, Chen Q (2014) GRP78 inhibits macrophage adhesion via SR-A. J Biomed Res 28:269–274.  https://doi.org/10.7555/jbr.28.20130054 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kakimura J, Kitamura Y, Taniguchi T, Shimohama S, Gebicke-Haerter PJ (2001) Bip/GRP78-induced production of cytokines and uptake of amyloid-beta(1–42) peptide in microglia. Biochem Biophys Res Commun 281:6–10.  https://doi.org/10.1006/bbrc.2001.4299 CrossRefPubMedGoogle Scholar
  41. 41.
    Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regen Res 9:2048–2052.  https://doi.org/10.4103/1673-5374.147929 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Suyama K, Watanabe M, Sakabe K, Okada Y, Matsuyama D, Kuroiwa M, Mochida J (2011) Overexpression of GRP78 protects glial cells from endoplasmic reticulum stress. Neurosci Lett 504:271–276.  https://doi.org/10.1016/j.neulet.2011.09.045 CrossRefPubMedGoogle Scholar
  43. 43.
    Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34:80–101CrossRefPubMedGoogle Scholar
  44. 44.
    Ma Y, Feng Q, Ouyang L, Mu S, Liu B, Li Y, Chen S, Lei W (2014) Morphological diversity of GABAergic and cholinergic interneurons in the striatal dorsolateral and ventromedial regions of rats. Cell Mol Neurobiol 34:351–359.  https://doi.org/10.1007/s10571-013-0019-4 CrossRefPubMedGoogle Scholar
  45. 45.
    Petryszyn S, Beaulieu JM, Parent A, Parent M (2014) Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates. J Chem Neuroanat 59–60:51–61.  https://doi.org/10.1016/j.jchemneu.2014.06.002 CrossRefPubMedGoogle Scholar
  46. 46.
    Francis A, Pulsinelli W (1982) The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res 243:271–278CrossRefPubMedGoogle Scholar
  47. 47.
    Chesselet MF, Gonzales C, Lin CS, Polsky K, Jin BK (1990) Ischemic damage in the striatum of adult gerbils: relative sparing of somatostatinergic and cholinergic interneurons contrasts with loss of efferent neurons. Exp Neurol 110:209–218CrossRefPubMedGoogle Scholar
  48. 48.
    Pisani A, Calabresi P, Centonze D, Marfia GA, Bernardi G (1999) Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation. J Neurophysiol 81:2508–2516.  https://doi.org/10.1152/jn.1999.81.5.2508 CrossRefPubMedGoogle Scholar
  49. 49.
    Deng L, Adachi T, Kitayama K, Bungyoku Y, Kitazawa S, Ishido S, Shoji I, Hotta H (2008) Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 82:10375–10385.  https://doi.org/10.1128/jvi.00395-08 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chen J, Graham SH, Zhu RL, Simon RP (1996) Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16:566–577.  https://doi.org/10.1097/00004647-199607000-00006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuyan Jin
    • 1
  • Dong Kyu Kim
    • 1
  • Tae-Ryong Riew
    • 1
  • Hong Lim Kim
    • 2
  • Mun-Yong Lee
    • 1
  1. 1.Department of Anatomy, Catholic Neuroscience Institute, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  2. 2.Integrative Research Support Center, Laboratory of Electron Microscopy, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea

Personalised recommendations