Advertisement

Neurochemical Research

, Volume 43, Issue 6, pp 1250–1257 | Cite as

The Peripheral Versus Central Antinociception of a Novel Opioid Agonist: Acute Inflammatory Pain in Rats

  • Mihály Balogh
  • Zoltán S. Zádori
  • Bernadette Lázár
  • Dávid Karádi
  • Szilvia László
  • Shaaban A. Mousa
  • Sándor Hosztafi
  • Ferenc Zádor
  • Pál Riba
  • Michael Schäfer
  • Susanna Fürst
  • Mahmoud Al-Khrasani
Original Paper
  • 80 Downloads

Abstract

Opioid analgesics devoid of central side effects are unmet medical need in the treatment of acute pain (e.g. post-operative pain). Recently, we have reported on 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU), a novel opioid agonist of high efficacy producing peripheral antinociception in subchronic inflammatory pain in certain doses. The present study focused on the antinociceptive effect of 14-O-MeM6SU compared to morphine in formalin test of an early/acute (Phase I) and late/tonic (Phase II) pain phases. Subcutaneous 14-O-MeM6SU (253–1012 nmol/kg) and morphine (3884–31075 nmol/kg) dose dependently reduced the pain behaviors of both phases. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid antagonist, abolished the antinociceptive effect of 506 nmol/kg 14-O-MeM6SU. On the other hand, the effects of 14-O-MeM6SU (1012 nmol/kg) and morphine (15538 nmol/kg) were only partially affected by NAL-M, indicating the contribution of CNS to antinociception. Locally injected test compounds into formalin treated paws caused antinociception in both phases. Locally effective doses of test compounds were also injected into contralateral paws. Morphine showed effects in both phases, 14-O-MeM6SU in certain doses failed to produce antinociception in either phase. A NAL-M reversible systemic dose of 14-O-MeM6SU and the lowest systemic effective dose of morphine were evaluated for their sedative effects following isoflurane-induced sleeping (righting reflex). In contrast to morphine, 14-O-MeM6SU in certain antinociceptive doses showed no impact on sleeping time. These data highlight that high efficacy opioids of limited CNS penetration in certain doses mitigate somatic and inflammatory pain by targeting MOR at the periphery.

Keywords

Antinociception Opioids 14-O-methylmorphine-6-O-sulfate Peripheral CNS 

Notes

Acknowledgements

The authors thank Semmelweis University Doctoral School (EFOP-3.6.3.-VEKOP-16-2017-00009) and Richter Gedeon Plc., Budapest, Hungary (Centenáriumi Alapítvány Research Grant) awarded to Dr. Mihály Balogh; ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities (awarded to Dr. Zoltán S. Zádori).

References

  1. 1.
    Chou R, Fanciullo GJ, Fine PG et al (2009) Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain 10:113–130.e22.  https://doi.org/10.1016/j.jpain.2008.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gaveriaux-Ruff C, Nozaki C, Nadal X et al (2011) Genetic ablation of delta opioid receptors in nociceptive sensory neurons increases chronic pain and abolishes opioid analgesia. Pain 152:1238–1248.  https://doi.org/10.1016/j.pain.2010.12.031 CrossRefPubMedGoogle Scholar
  3. 3.
    Khalefa BI, Mousa SA, Shaqura M et al (2013) Peripheral antinociceptive efficacy and potency of a novel opioid compound 14-O-MeM6SU in comparison to known peptide and non-peptide opioid agonists in a rat model of inflammatory pain. Eur J Pharmacol 713:54–57.  https://doi.org/10.1016/j.ejphar.2013.04.043 CrossRefPubMedGoogle Scholar
  4. 4.
    Lackó E, Riba PP, Giricz ZZ et al (2016) New morphine analogs produce peripheral antinociception within a certain dose range of their systemic administration. J Pharmacol Exp Ther 359:171–181.  https://doi.org/10.1124/jpet.116.233551 CrossRefPubMedGoogle Scholar
  5. 5.
    Fürst S, Riba P, Friedmann T et al (2005) Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat. J Pharmacol Exp Ther 312:609–618.  https://doi.org/10.1124/jpet.104.075176 CrossRefPubMedGoogle Scholar
  6. 6.
    Obara I, Parkitna JR, Korostynski M et al (2009) Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. Pain 141:283–291.  https://doi.org/10.1016/j.pain.2008.12.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Jourdan D, Ardid D, Bardin L et al (1997) A new automated method of pain scoring in the formalin test in rats. Pain 71:265–270.  https://doi.org/10.1016/S0304-3959(97)03366-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Shannon HE, Lutz EA (2002) Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology 42:253–261.  https://doi.org/10.1016/S0028-3908(01)00173-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174.  https://doi.org/10.1016/0304-3959(77)90130-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Lacko E, Varadi A, Rapavi R et al (2012) A novel µ-opioid receptor ligand with high in vitro and in vivo agonist efficacy. Curr Med Chem 19:4699–4707.  https://doi.org/10.2174/092986712803306376 CrossRefPubMedGoogle Scholar
  11. 11.
    Coderre TJ, Yashpal K (1994) Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model. Eur J Neurosci 6:1328–1334.  https://doi.org/10.1111/j.1460-9568.1994.tb00323.x CrossRefPubMedGoogle Scholar
  12. 12.
    Rachinger-Adam B, Conzen P, Azad SC (2011) Pharmacology of peripheral opioid receptors. Curr Opin Anaesthesiol 24:408–413.  https://doi.org/10.1097/ACO.0b013e32834873e5 CrossRefPubMedGoogle Scholar
  13. 13.
    Iwaszkiewicz KS, Schneider JJ, Hua S (2013) Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol 4:132.  https://doi.org/10.3389/fphar.2013.00132 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lewanowitsch T, Irvine RJ (2002) Naloxone methiodide reverses opioid-induced respiratory depression and analgesia without withdrawal. Eur J Pharmacol 445:61–67.  https://doi.org/10.1016/S0014-2999(02)01715-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Bianchi G, Fiocchi R, Tavani A, Manara L (1982) Quaternary narcotic antagonists’ relative ability to prevent antinociception and gastrointestinal transit inhibition in morphine-treated rats as an index of peripheral selectivity. Life Sci 30:1875–1883.  https://doi.org/10.1016/0024-3205(82)90467-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Riba P, Ben Y, Nguyen T et al (2002) [Dmt1]DALDA is highly selective and potent at mu-opioid receptors, but is not cross-tolerant with systemic morphine. Curr Med Chem 9:31–39.  https://doi.org/10.2174/0929867023371445 CrossRefPubMedGoogle Scholar
  17. 17.
    Khalefa BI, Shaqura M, Al-Khrasani M et al (2012) Relative contributions of peripheral versus supraspinal or spinal opioid receptors to the antinociception of systemic opioids. Eur J Pain 16:690–705.  https://doi.org/10.1002/j.1532-2149.2011.00070.x CrossRefPubMedGoogle Scholar
  18. 18.
    Janson W, Stein C (2003) Peripheral opioid analgesia. Curr Pharm Biotechnol 4:270–274.  https://doi.org/10.2174/1389201033489766 CrossRefPubMedGoogle Scholar
  19. 19.
    McGuire JL, Awouters F, Niemegeers CJ (1978) Interaction of loperamide and diphenoxylate with ethanol and methohexital. Arch Int Pharmacodyn Ther 236:51–59PubMedGoogle Scholar
  20. 20.
    Craft RM, Leitl MD (2006) Potentiation of morphine antinociception by pentobarbital in female vs. male rats. Pain 121:115–125.  https://doi.org/10.1016/j.pain.2005.12.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Brohan J, Basavana G (2017) The role of GABA receptor agonists in anesthesia and sedation. CNS Drugs 31:845–856.  https://doi.org/10.1007/s40263-017-0463-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Stein C, Schäfer M, Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9:1003–1008CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mihály Balogh
    • 1
  • Zoltán S. Zádori
    • 1
  • Bernadette Lázár
    • 1
  • Dávid Karádi
    • 1
  • Szilvia László
    • 1
  • Shaaban A. Mousa
    • 2
  • Sándor Hosztafi
    • 3
  • Ferenc Zádor
    • 4
  • Pál Riba
    • 1
  • Michael Schäfer
    • 2
  • Susanna Fürst
    • 1
  • Mahmoud Al-Khrasani
    • 1
  1. 1.Department of Pharmacology and Pharmacotherapy, Faculty of MedicineSemmelweis UniversityBudapestHungary
  2. 2.Department of Anaesthesiology and Intensive Care MedicineCharité University BerlinBerlinGermany
  3. 3.Department of Pharmaceutical ChemistrySemmelweis UniversityBudapestHungary
  4. 4.Institute of BiochemistryBiological Research Center of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations