The Effects of Chronic Amitriptyline on Zebrafish Behavior and Monoamine Neurochemistry


Amitriptyline is a commonly used tricyclic antidepressant (TCA) inhibiting serotonin and norepinephrine reuptake. The exact CNS action of TCAs remains poorly understood, necessitating new screening approaches and novel model organisms. Zebrafish (Danio rerio) are rapidly emerging as a promising tool for pharmacological research of antidepressants, including amitriptyline. Here, we examine the effects of chronic 2-week exposure to 10 and 50 μg/L amitriptyline on zebrafish behavior and monoamine neurotransmitters. Overall, the drug at 50 μg/L evoked pronounced anxiolytic-like effects in the novel tank test (assessed by more time in top, fewer transition and shorter latency to enter the top). Like other TCAs, amitriptyline reduced serotonin turnover, but also significantly elevated whole-brain norepinephrine and dopamine levels. The latter effect was not reported in this model previously, and accompanied higher brain expression of tyrosine hydroxylase (a rate-limiting enzyme of catecholamine biosynthesis), but unaltered expression of dopamine-β-hydroxylase and monoamine oxidase (the enzymes of dopamine metabolism). This response may underlie chronic amitriptyline action on dopamine and norepinephrine neurotransmission, and contribute to the complex CNS profile of this drug observed both clinically and in animal models. Collectively, these findings also confirm the important role of monoamine modulation in the regulation of anxiety-related behavior in zebrafish, and support the utility of this organism as a promising in-vivo model for CNS drug screening.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Agarwal N, Joshi M (2017) Effectiveness of amitriptyline and lamotrigine in traumatic spinal cord injury-induced neuropathic pain: a randomized longitudinal comparative study. Spinal Cord 55:126–130

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Baker DR, Kasprzyk-Hordern B (2011) Multi-residue determination of the sorption of illicit drugs and pharmaceuticals to wastewater suspended particulate matter using pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 1218:7901–7913

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M (1991) Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J Clin Invest 87:831–837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Chen M, Hoshino H, Saito S, Yang Y, Obata H (2017) Spinal dopaminergic involvement in the antihyperalgesic effect of antidepressants in a rat model of neuropathic pain. Neurosci Lett 649:116–123

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Chung MY, Kim DG, Yoo KJ, Hong SS (1993) Regional differences in the levels of biogenic amines and their metabolites in rat brain after tricyclic antidepressant treatments. Yonsei Med J 34:266–277

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Daly JM, Wilens T (1998) The use of tricyclic antidepressants in children and adolescents. Pediatr Clin North Am 45:1123–1135

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Daszuta A, Barrit MC (1982) Endogenous serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) levels in large regions and in discrete brain areas of C57BL and BALBc mice at three times of the day. Brain Res Bull 8:477–482

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Demin KA, Kolesnikova TO, Khatsko SL, Meshalkina DA, Efimova EV, Morzherin YY, Kalueff AV (2017) Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol 62: 27–33

    Article  CAS  Google Scholar 

  9. 9.

    Di Matteo V, Di Mascio M, Di Giovanni G, Esposito E (2000) Acute administration of amitriptyline and mianserin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin2C receptors. Psychopharmacology 150:45–51

    Article  PubMed  Google Scholar 

  10. 10.

    Egan J, Earley CJ, Leonard BE (1979) The effect of amitriptyline and mianserine (Org. GB94) on food motivated behaviour of rats trained in a runway: possible correlation with biogenic amine concentration in the limbic system. Psychopharmacology 61:143–147

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Ferretti C, Blengio M, Gamalero SR, Ghi P (1995) Biochemical and behaviour changes induced by acute stress in a chronic variate stress model of depression: the effect of amitriptyline. Eur J Pharmacol 280:19–26

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Fisar Z, Hroudova J, Raboch J (2010) Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol Lett 31:645–656

    PubMed  CAS  Google Scholar 

  13. 13.

    Fu AL, Chen HY, Xu XR, Zhao BQ (2012) Zebrafish as a model animal for the study of blood-brain barrier permeability by biomolecules. Yao Xue Xue Bao 47:1447–1451

    PubMed  Google Scholar 

  14. 14.

    Guaiana G, Barbui C, Hotopf M (2007) Amitriptyline for depression. Cochrane Database Syst Rev CD004186

  15. 15.

    Hellings JA, Arnold LE, Han JC (2017) Dopamine antagonists for treatment resistance in autism spectrum disorders: review and focus on BDNF stimulators loxapine and amitriptyline. Expert Opin Pharmacother 18:581–588

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Ichikawa J, Kuroki T, Meltzer HY (1998) Differential effects of chronic imipramine and fluoxetine on basal and amphetamine-induced extracellular dopamine levels in rat nucleus accumbens. Eur J Pharmacol 350:159–164

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Jang SW, Liu X, Chan CB, Weinshenker D, Hall RA, Xiao G, Ye K (2009) Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity. Chem Biol 16:644–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SC, Weng W, Bally-Cuif L, Schneider H, Zebrafish Neuroscience Research C (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Kandil EA, Abdelkader NF, El-Sayeh BM, Saleh S (2016) Imipramine and amitriptyline ameliorate the rotenone model of Parkinson’s disease in rats. Neuroscience 332:26–37

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography-electrospray tandem mass spectrometry. Anal Bioanal Chem 391:1293–1308

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Katz RJ, Hersh S (1981) Amitriptyline and scopolamine in an animal model of depression. Neurosci Biobehav Rev 5:265–271

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ (2017) Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 173:1925–1944

    Google Scholar 

  24. 24.

    Kim SS, Im SH, Yang JY, Lee YR, Kim GR, Chae JS, Shin DS, Song JS, Ahn S, Lee BH, Woo JC, Ahn JH, Yun CS, Kim P, Kim HR, Lee KR, Bae MA (2017) Zebrafish as a screening model for testing the permeability of blood-brain barrier to small molecules. Zebrafish 14:322–330

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Kolesnikova TO, Khatsko SL, Shevyrin VA, Morzherin YY, Kalueff AV (2017) Effects of a non-competitive N-methyl-d-aspartate (NMDA) antagonist, tiletamine, in adult zebrafish. Neurotoxicol Teratol 59:62–67

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Kroner JW, Peugh J, Kashikar-Zuck SM, LeCates SL, Allen JR, Slater SK, Zafar M, Kabbouche MA, O’Brien HL, Shenk CE, Kroon Van Diest AM, Hershey AD, Powers SW (2017) Trajectory of Improvement in children and adolescents with chronic migraine: results from the cognitive-behavioral therapy and amitriptyline trial. J Pain 18:637–644

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lajeunesse A, Gagnon C, Sauve S (2008) Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal Chem 80:5325–5333

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Lammers CH, Diaz J, Schwartz JC, Sokoloff P (2000) Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 5:378–388

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Lawson K (2017) A brief review of the pharmacology of amitriptyline and clinical outcomes in treating fibromyalgia. Biomedicines 5:24

    Article  PubMed Central  CAS  Google Scholar 

  30. 30.

    Leucht C, Huhn M, Leucht S (2012) Amitriptyline versus placebo for major depressive disorder. Cochrane Database Syst Rev 12: CD009138

  31. 31.

    Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Messiha FS (1990) Effects of amitriptyline and nortriptyline on cerebral activity of the CDF-1 mouse strain. Gen Pharmacol 21:955–959

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Messiha FS (1991) Effects of a secondary and a tertiary amine tricyclic antidepressant on cerebral biogenic amines as a function of mouse strain: a comparative neurotoxicological evaluation. Toxicol Lett 58:77–84

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 87:7522–7526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK, Stewart AM, Kalueff AV (2013) Developing ‘integrative’ zebrafish models of behavioral and metabolic disorders. Behav Brain Res 256:172–187

    Article  PubMed  Google Scholar 

  36. 36.

    Orsetti M, Colella L, Dellarole A, Canonico PL, Ferri S, Ghi P (2006) Effects of chronic administration of olanzapine, amitriptyline, haloperidol or sodium valproate in naive and anhedonic rats. Int J Neuropsychopharmacol 9:427–436

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Papp M (1989) Differential effects of short-and long-term antidepressant treatments on the food-induced place preference conditioning in rats. Behav Pharmacol 1:69–74

    Article  PubMed  Google Scholar 

  38. 38.

    Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Daley BF, Collier TJ (2015) Tricyclic antidepressant treatment evokes regional changes in neurotrophic factors over time within the intact and degenerating nigrostriatal system. Exp Neurol 266:11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Rosin DL, Melia K, Knorr AM, Nestler EJ, Roth RH, Duman RS (1995) Chronic imipramine administration alters the activity and phosphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain. Neuropsychopharmacology 12:113–121

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Rossetti ZL, D’Aquila PS, Hmaidan Y, Gessa GL, Serra G (1991) Repeated treatment with imipramine potentiates cocaine-induced dopamine release and motor stimulation. Eur J Pharmacol 201:243–245

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish Behavior in Novel Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp 23:43–61

  44. 44.

    Sampson D, Willner P, Muscat R (1991) Reversal of antidepressant action by dopamine antagonists in an animal model of depression. Psychopharmacology 104:491–495

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Sindrup SH, Jensen TS (1999) Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 83:389–400

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Singer ML, Oreschak K, Rhinehart Z, Robison BD (2016) Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. PeerJ 4:e2352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Stewart AM, Cachat J, Gaikwad S, Robinson KS, Gebhardt M, Kalueff AV (2013) Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem Int 62:893–902

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Stewart AM, Gerlai R, Kalueff AV (2015) Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci 9:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Werling LL, Keller A, Frank JG, Nuwayhid SJ (2007) A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp Neurol 207:248–257

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

Download references


Laboratory zebrafish maintenance for this project was performed by the Environmental Safety Observatory Bioelectronic Complex of SPSU. The research was supported by the Russian Foundation for Basic Research (RFBR) grants 16-04-00851 to АVK, and 18-315-00375 to DAM. RRG was supported by a Russian Science Foundation (RSF) grant 14-50-00069.

Author information



Corresponding author

Correspondence to Allan V. Kalueff.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meshalkina, D.A., Kysil, E.V., Antonova, K.A. et al. The Effects of Chronic Amitriptyline on Zebrafish Behavior and Monoamine Neurochemistry. Neurochem Res 43, 1191–1199 (2018).

Download citation


  • Zebrafish
  • Amitriptyline
  • Tricyclic antidepressants
  • Serotonin
  • Dopamine
  • Norephnephrine