Neurochemical Research

, Volume 43, Issue 6, pp 1143–1149 | Cite as

MiR-183-5p Alleviates Chronic Constriction Injury-Induced Neuropathic Pain Through Inhibition of TREK-1

  • Dan-Ni Shi
  • Yi-Tao Yuan
  • Dan Ye
  • Lu-Mei Kang
  • Jing Wen
  • Hong-Ping Chen
Original Paper


MicroRNAs have been implicated in nerve injury and neuropathic pain. In the previous study we had shown that miR-96 can attenuate neuropathic pain through inhibition of Nav1.3. In this study, we investigated the role of miR-183, a same cluster member of microRNA with miR-96, in neuropathic pain and its potential mechanisms. We found that the expression level of miR-183-5p in dorsal root ganglion was decreased with the development of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). By contrast, the TREK-1, a K+ channel, was increased. Further investigation identified that intrathecal injection of miR-183-5p mimic efficiently ameliorated neuropathic pain and inhibited the expression of TREK-1, a predicted target gene of miR-183-5p. Luciferase assays confirmed the binding of miR-183-5p and TREK-1. In addition, over-expression of TREK-1 blocked the roles of miR-183-5p in neuropathic pain. Our findings suggested that miR-183-5P participated in the regulation of CCI-induced neuropathic pain through inhibiting the expression of TREK-1.


MiR-183-5p TREK-1 Chronic constriction injury Neuropathic pain Dorsal root ganglion 



This study was supported by the National Natural Science Foundation of China (Nos. 31760274, 81760213, 81260318), Outstanding Young Talent Support Plan of Jiangxi Province (No. 20171BCB23027), and Natural Science Foundation of Jiangxi Province (No. 20171BAB204017).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interests.


  1. 1.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610CrossRefPubMedGoogle Scholar
  2. 2.
    Indersie E, Lesjean S, Hooks KB, Sagliocco F, Ernault T, Cairo S, Merched-Sauvage M, Rullier A, Le Bail B, Taque S, Grotzer M, Branchereau S, Guettier C, Fabre M, Brugieres L, Hagedorn M, Buendia MA, Grosset CF (2017) MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting beta-catenin and Wnt signaling. Hepatol Commun 1:168–183CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shankaraiah RC, Veronese A, Sabbioni S, Negrini M (2018) Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 419:167–174CrossRefPubMedGoogle Scholar
  4. 4.
    Nagai H, Hasegawa S, Uchida F, Terabe T, Ishibashi KN, Kato K, Yamagata K, Sakai S, Kawashiri S, Sato H, Yanagawa T, Bukawa H (2018) MicroRNA-205-5p suppresses the invasiveness of oral squamous cell carcinoma by inhibiting TIMP2 expression. Int J Oncol 52:841–850PubMedGoogle Scholar
  5. 5.
    Koga T, Migita K, Sato T, Sato S, Umeda M, Nonaka F, Fukui S, Kawashiri SY, Iwamoto N, Ichinose K, Tamai M, Nakamura H, Origuchi T, Ueki Y, Masumoto J, Agematsu K, Yachie A, Yoshiura KI, Eguchi K, Kawakami A (2018) MicroRNA-204-3p inhibits lipopolysaccharide-induced cytokines in familial Mediterranean fever via the phosphoinositide 3-kinase γ pathway. Rheumatology (Oxford) 57:718–726CrossRefGoogle Scholar
  6. 6.
    Rubis P, Toton-Zuranska J, Wisniowska-Smialek S, Dziewiecka E, Kolton-Wroz M, Wolkow P, Pitera E, Rudnicka-Sosin L, Garlitski AC, Gackowski A, Podolec P (2018) The relationship between myocardial fibrosis and myocardial microRNAs in dilated cardiomyopathy: a link between mir-133a and cardiovascular events. J Cell Mol Med 22:2514–2517CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hill JM, Lukiw WJ (2016) MicroRNA (miRNA)-mediated pathogenetic signaling in alzheimer’s disease (AD). Neurochem Res 41:96–100CrossRefPubMedGoogle Scholar
  8. 8.
    Wang P, Liang X, Lu Y, Zhao X, Liang J (2016) MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem Res 41:2627–2635CrossRefPubMedGoogle Scholar
  9. 9.
    Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X, Pan W, Zhang L, Zhang R, Hu J, Zhang XM, Chopp M, Zhang ZG (2017) MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes 66:3111–3121CrossRefPubMedGoogle Scholar
  10. 10.
    Shu B, Zhang X, Du G, Fu Q, Huang L (2018) MicroRNA-107 prevents amyloid-beta-induced neurotoxicity and memory impairment in mice. Int J Mol Med 41:1665–1672PubMedGoogle Scholar
  11. 11.
    Radhakrishnan B, Alwin PAA (2016) Role of miRNA-9 in brain development. J Exp Neurosci 10:101–120CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jiangpan P, Qingsheng M, Zhiwen Y, Tao Z (2016) Emerging role of microRNA in neuropathic pain. Curr Drug Metab 17:336–344CrossRefPubMedGoogle Scholar
  13. 13.
    Xia L, Zhang Y, Dong T (2016) Inhibition of MicroRNA-221 alleviates neuropathic pain through targeting suppressor of cytokine signaling 1. J Mol Neurosci 59:411–420CrossRefPubMedGoogle Scholar
  14. 14.
    Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H (2013) MiR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain 136:2738–2750CrossRefPubMedGoogle Scholar
  15. 15.
    Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T (2009) Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 164:711–723CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH, Cai WH (2014) Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochem Res 39:76–83CrossRefPubMedGoogle Scholar
  17. 17.
    Xie X, Ma L, Xi K, Zhang W, Fan D (2017) MicroRNA-183 suppresses neuropathic pain and expression of AMPA receptors by targeting mTOR/VEGF signaling pathway. Cell Physiol Biochem 41:181–192CrossRefPubMedGoogle Scholar
  18. 18.
    Li X, Kang L, Li G, Zeng H, Zhang L, Ling X, Dong H, Liang S, Chen H (2013) Intrathecal leptin inhibits expression of the P2 × 2/3 receptors and alleviates neuropathic pain induced by chronic constriction sciatic nerve injury. Mol Pain 9:65PubMedPubMedCentralGoogle Scholar
  19. 19.
    Brozou V, Vadalouca A, Zis P (2017) Pain in Platin-Induced neuropathies: a systematic review and meta-analysis. Pain Ther. PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chen H, Wang Q, Shi D, Yao D, Zhang L, Xiong J, Xu B (2016) Celecoxib alleviates oxaliplatin-induced hyperalgesia through inhibition of spinal ERK1/2 signaling. J Toxicol Pathol 29:253–259CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jiang SP, Zhang ZD, Kang LM, Wang QH, Zhang L, Chen HP (2016) Celecoxib reverts oxaliplatin-induced neuropathic pain through inhibiting PI3K/Akt2 pathway in the mouse dorsal root ganglion. Exp Neurol 275:11–16CrossRefPubMedGoogle Scholar
  22. 22.
    Li H, Shen L, Ma C, Huang Y (2013) Differential expression of miRNAs in the nervous system of a rat model of bilateral sciatic nerve chronic constriction injury. Int J Mol Med 32:219–226CrossRefPubMedGoogle Scholar
  23. 23.
    Lin CR, Chen KH, Yang CH, Huang HW, Sheen-Chen SM (2014) Intrathecal miR-183 delivery suppresses mechanical allodynia in mononeuropathic rats. Eur J Neurosci 39:1682–1689CrossRefPubMedGoogle Scholar
  24. 24.
    Boroujerdi A, Zeng J, Sharp K, Kim D, Steward O, Luo ZD (2011) Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain 152:649–655CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Peng C, Li L, Zhang MD, Bengtsson GC, Parisien M, Belfer I, Usoskin D, Abdo H, Furlan A, Haring M, Lallemend F, Harkany T, Diatchenko L, Hokfelt T, Hjerling-Leffler J, Ernfors P (2017) MiR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science 356:1168–1171CrossRefPubMedGoogle Scholar
  26. 26.
    Kitayama T (2018) The role of k(+)-Cl(−)-Cotransporter-2 in neuropathic pain. Neurochem Res 43:101–106CrossRefPubMedGoogle Scholar
  27. 27.
    Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X (2011) TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 7:30CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Han HJ, Lee SW, Kim GT, Kim EJ, Kwon B, Kang D, Kim HJ, Seo KS (2016) Enhanced expression of TREK-1 is related with chronic constriction injury of neuropathic pain mouse model in dorsal root ganglion. Biomol Ther 24:252–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dan-Ni Shi
    • 1
  • Yi-Tao Yuan
    • 1
    • 2
  • Dan Ye
    • 3
  • Lu-Mei Kang
    • 4
  • Jing Wen
    • 1
  • Hong-Ping Chen
    • 1
    • 5
  1. 1.Department of Histology and Embryology, Medical CollegeNanchang UniversityNanchangPeople’s Republic of China
  2. 2.Nanchang Joint ProgrammeQueen Mary University of LondonLondonUK
  3. 3.School of Life ScienceJiangxi Science & Techology Normal UniversityNanchangPeople’s Republic of China
  4. 4.Department of Animal Science, Medical CollegeNanchang UniversityNanchangPeople’s Republic of China
  5. 5.Jiangxi Province Key Laboratory of Tumor Pathogen’s and Molecular PathologyNanchangPeople’s Republic of China

Personalised recommendations