Skip to main content
Log in

Picroside II Attenuates CCI-Induced Neuropathic Pain in Rats by Inhibiting Spinal Reactive Astrocyte-Mediated Neuroinflammation Through the NF-κB Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Reactive astrocyte-mediated neuroinflammatory responses in the spinal dorsal horn have been reported to play a pivotal role in pathological pain. Chronic constriction injury (CCI) enhances the activation of nuclear factor kappa B (NF-κB), which is involved in neuropathic pain (NP). Picroside II (PII), a major active component of Picrorhiza scrophulariiflora, has been investigated for its anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Here, we explored the analgesic effects of PII on a model of CCI-induced NP and investigated the levels of the GFAP protein and the mRNA and protein levels of pro-inflammatory cytokines in the spinal cord, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CCI significantly induced mechanical allodynia and thermal hyperalgesia. Intraperitoneal administration of PII remarkably reversed the CCI-induced mechanical allodynia and thermal hyperalgesia and reduced the mRNA and protein levels of IL-1β, IL-6, and TNF-α in the spinal cord. Additionally, according to the in vitro data, the PII treatment inhibited LPS-induced increases in the mRNA and protein levels of IL-1β, IL-6, and TNF-α and suppressed the NF-κB pathway by inhibiting the phosphorylation of NF-κB/p65 and the degradation of inhibitor of NF-κB (IκB) in astrocytes without toxicity to astrocytes. Overall, the analgesic effect of PII correlated with the inhibition of spinal reactive astrocyte-mediated neuroinflammation through the NF-κB pathway in rats with NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ 348:f7656. https://doi.org/10.1136/bmj.f7656

    Article  PubMed  Google Scholar 

  2. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32. https://doi.org/10.1146/annurev.neuro.051508.135531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662. https://doi.org/10.1016/j.pain.2013.11.013

    Article  PubMed  Google Scholar 

  4. Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152(10):2204–2205. https://doi.org/10.1016/j.pain.2011.06.017

    Article  PubMed  Google Scholar 

  5. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635. https://doi.org/10.1212/01.wnl.0000282763.29778.59

    Article  CAS  PubMed  Google Scholar 

  6. Schestatsky P, Vidor L, Winckler PB, Araujo TG, Caumo W (2014) Promising treatments for neuropathic pain. Arquivos de neuro-psiquiatria 72(11):881–888

    Article  PubMed  Google Scholar 

  7. Liu F, Yuan H (2014) Role of glia in neuropathic pain. Front Biosci (Landmark Edition) 19:798–807

    Article  Google Scholar 

  8. Jha MK, Jeon S, Suk K (2012) Glia as a link between neuroinflammation and neuropathic pain. Immune Netw 12(2):41–47. https://doi.org/10.4110/in.2012.12.2.41

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B (2013) Importance of glial activation in neuropathic pain. Eur J Pharmacol 716(1–3):106–119. https://doi.org/10.1016/j.ejphar.2013.01.072

    Article  CAS  PubMed  Google Scholar 

  10. Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19(3):138–152. https://doi.org/10.1038/nrn.2018.2

    Article  CAS  PubMed  Google Scholar 

  11. Eto K, Kim SK, Takeda I, Nabekura J (2018) The roles of cortical astrocytes in chronic pain and other brain pathologies. Neurosci Res 126:3–8. https://doi.org/10.1016/j.neures.2017.08.009

    Article  PubMed  Google Scholar 

  12. Fattori V, Hohmann MSN (2017) Targeting IL-33/ST2 signaling: regulation of immune function and analgesia. Expert Opin Ther Targets 21(12):1141–1152. https://doi.org/10.1080/14728222.2017.1398734

    Article  CAS  PubMed  Google Scholar 

  13. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38(1):5–19. https://doi.org/10.1016/j.it.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Yang L, Yang L, Xing F, Yang H, Qin L, Lan Y, Wu H, Zhang B, Shi H, Lu C, Huang F, Wu X, Wang Z (2017) Gypenoside IX suppresses p38 MAPK/Akt/NFkappaB signaling pathway activation and inflammatory responses in astrocytes stimulated by proinflammatory mediators. Inflammation. https://doi.org/10.1007/s10753-017-0654-x

    PubMed Central  Google Scholar 

  15. Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J (2016) Gliogenic LTP spreads widely in nociceptive pathways. Science 354(6316):1144–1148. https://doi.org/10.1126/science.aah5715

    Article  CAS  PubMed  Google Scholar 

  16. Sommer C, Leinders M, Uceyler N (2018) Inflammation in the pathophysiology of neuropathic pain. Pain 159(3):595–602. https://doi.org/10.1097/j.pain.0000000000001122

    CAS  PubMed  Google Scholar 

  17. Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28. https://doi.org/10.1016/j.pain.2013.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clark AK, Old EA, Malcangio M (2013) Neuropathic pain and cytokines: current perspectives. J Pain Res 6:803–814. https://doi.org/10.2147/jpr.s53660

    PubMed  PubMed Central  Google Scholar 

  19. Guo CJ, Douglas SD, Gao Z, Wolf BA, Grinspan J, Lai JP, Riedel E, Ho WZ (2004) Interleukin-1beta upregulates functional expression of neurokinin-1 receptor (NK-1R) via NF-kappaB in astrocytes. Glia 48(3):259–266. https://doi.org/10.1002/glia.20079

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77. https://doi.org/10.3389/fnmol.2015.00077

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pan YD, Guo QL, Wang E, Ye Z, He ZH, Zou WY, Cheng ZG, Wang YJ (2010) Intrathecal infusion of pyrrolidine dithiocarbamate for the prevention and reversal of neuropathic pain in rats using a sciatic chronic constriction injury model. Reg Anesth Pain Med 35(3):231–237. https://doi.org/10.1097/AAP.0b013e3181df245b

    Article  PubMed  Google Scholar 

  22. Negi AS, Kumar JK, Luqman S, Shanker K, Gupta MM, Khanuja SP (2008) Recent advances in plant hepatoprotectives: a chemical and biological profile of some important leads. Med Res Rev 28(5):746–772. https://doi.org/10.1002/med.20115

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Xue B, Ma B, Zhang Q, Liu M, Liu L, Yao D, Qi H, Wang Y, Ying H, Wu Z (2015) A pre-clinical pharmacokinetic study in rats of three naturally occurring iridoid glycosides, Picroside-I, II and III, using a validated simultaneous HPLC-MS/MS assay. Journal of chromatography B. Anal Technol Biomed Life Sci 993–994:47–59. https://doi.org/10.1016/j.jchromb.2015.04.036

    Article  Google Scholar 

  24. Zhao L, Guo Y, Ji X, Zhang M (2014) The neuroprotective effect of picroside II via regulating the expression of myelin basic protein after cerebral ischemia injury in rats. BMC Neurosci 15:25. https://doi.org/10.1186/1471-2202-15-25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu G, Zhao L, Wang T, Zhang M, Pei H (2014) Optimal therapeutic dose and time window of picroside II in cerebral ischemic injury. Neural Regen Res 9(15):1437–1445. https://doi.org/10.4103/1673-5374.139460

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li JZ, Xie MQ, Mo D, Zhao XF, Yu SY, Liu LJ, Wu C, Yang Y (2016) Picroside II protects myocardium from ischemia/reperfusion-induced injury through inhibition of the inflammatory response. Experim Ther Med 12(6):3507–3514. https://doi.org/10.3892/etm.2016.3841

    Article  CAS  Google Scholar 

  27. Wang Y, Fang W, Wu L, Yao X, Wu S, Wang J, Xu Z, Tian F, He Z, Dong B (2016) Neuroprotective effect of picroside II in brain injury in mice. Am J Transl Res 8(12):5532–5544

    PubMed  PubMed Central  Google Scholar 

  28. Wang L, Liu XH, Chen H, Chen ZY, Weng XD, Qiu T, Liu L (2015) Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-kappaB pathway. Experim Ther Med 9(4):1253–1258. https://doi.org/10.3892/etm.2015.2225

    Article  CAS  Google Scholar 

  29. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

    Article  CAS  PubMed  Google Scholar 

  30. Keyhanfar F, Shamsi Meymandi M, Sepehri G, Rastegaryanzadeh R, Heravi G (2013) Evaluation of antinociceptive effect of pregabalin in mice and its combination with tramadol using tail flick test. Iran J Pharm Res 12(3):483–493

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Meymandi MS, Sepehri G, Mobasher M (2006) Gabapentin enhances the analgesic response to morphine in acute model of pain in male rats. Pharmacol Biochem Behav 85(1):185–189. https://doi.org/10.1016/j.pbb.2006.07.037

    Article  CAS  PubMed  Google Scholar 

  32. Wang LX, Wang ZJ (2003) Animal and cellular models of chronic pain. Adv Drug Deliv Rev 55(8):949–965

    Article  CAS  PubMed  Google Scholar 

  33. Guo Y, Xu X, Li Q, Li Z, Du F (2010) Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behav Brain Funct 6:43. https://doi.org/10.1186/1744-9081-6-43

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Liu XH, Chen H, Chen ZY, Weng XD, Qiu T, Liu L (2014) Picroside II decreases the development of fibrosis induced by ischemia/reperfusion injury in rats. Ren Fail 36(9):1443–1448. https://doi.org/10.3109/0886022x.2014.949766

    Article  PubMed  Google Scholar 

  35. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang W, Mei XP, Wei YY, Zhang MM, Zhang T, Wang W, Xu LX, Wu SX, Li YQ (2011) Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun 25 (7):1355–1366. https://doi.org/10.1016/j.bbi.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  37. Gao YJ, Ji RR (2010) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7(4):482–493. https://doi.org/10.1016/j.nurt.2010.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, De Koninck Y (2006) Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 97(3):772–783. https://doi.org/10.1111/j.1471-4159.2006.03746.x

    Article  CAS  PubMed  Google Scholar 

  39. Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR, Decosterd I, Ji RR (2006) A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci 26(13):3551–3560. https://doi.org/10.1523/jneurosci.5290-05.2006

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Wang W, Mei X, Huang J, Wei Y, Wang Y, Wu S, Li Y (2009) Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PloS ONE 4(9):e6973. https://doi.org/10.1371/journal.pone.0006973

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kiguchi N, Kobayashi Y, Kishioka S (2012) Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 12(1):55–61. https://doi.org/10.1016/j.coph.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  42. Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S (1997) Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 121(3):417–424. https://doi.org/10.1038/sj.bjp.0701148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sommer C, Kress M (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 361(1–3):184–187. https://doi.org/10.1016/j.neulet.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  44. Zhang RX, Liu B, Li A, Wang L, Ren K, Qiao JT, Berman BM, Lao L (2008) Interleukin 1beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation. Neuroscience 154(4):1533–1538. https://doi.org/10.1016/j.neuroscience.2008.04.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28(20):5189–5194. https://doi.org/10.1523/jneurosci.3338-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, Qi HX, Ting C, Zhen Z, Hong W (2016) Upstream regulators and downstream effectors of NF-kappaB in Alzheimer’s disease. J Neurol Sci 366:127–134. https://doi.org/10.1016/j.jns.2016.05.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Guangxi Province (No. 2011GXNSFA018222) and Medicine Health Science and Technology Program of Guangxi Province (No. S201414-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyan Lan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 536 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, X., Lan, Y. Picroside II Attenuates CCI-Induced Neuropathic Pain in Rats by Inhibiting Spinal Reactive Astrocyte-Mediated Neuroinflammation Through the NF-κB Pathway. Neurochem Res 43, 1058–1066 (2018). https://doi.org/10.1007/s11064-018-2518-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2518-7

Keywords

Navigation