Neurochemical Research

, Volume 43, Issue 4, pp 918–929 | Cite as

Effect of Yulangsan Polysaccharide on the Reinstatement of Morphine-Induced Conditioned Place Preference in Sprague–Dawley Rats

  • Chunxia Chen
  • Zhihuan Nong
  • Xingmei Liang
  • Mingyu Meng
  • Feifei Xuan
  • Qiuqiao Xie
  • Junhui He
  • Renbin Huang
Original Paper


We previously reported that Yulangsan polysaccharide (YLSP), which was isolated from the root of Millettia pulchra Kurz, attenuates withdrawal symptoms of morphine dependence by regulating the nitric oxide pathway and modulating monoaminergic neurotransmitters. In this study, we investigated the effects and mechanism of YLSP on the reinstatement of morphine-induced conditioned place preference (CPP) in rats. A CPP procedure was employed to assess the behavior of rats, and indicators of serum and four brain regions (nucleus accumbens, ventral tegmental area, hippocampus and prefrontal cortex) were determined to explore its underlying mechanism. YLSP inhibited priming morphine-induced reinstatement of CPP in a dose-dependent manner. YLSP markedly reduced nitric oxide and nitric oxide synthase levels in the brain. Moreover, YLSP significantly decreased the dopamine and norepinephrine levels in the serum and brain. Furthermore, YLSP significantly decreased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) concentrations, inhibited the expression of dopamine D1 receptors and cAMP response element binding protein mRNA, and improved the expression of dopamine D2 receptor mRNA in the four brain regions. Our findings indicated that YLSP could inhibit the reinstatement of morphine-induced CPP possibly by modulating the NO-cGMP and D1R-cAMP signaling pathways.


Yulangsan polysaccharide Conditioned place preference Morphine Dopamine receptor CREB 



This work was financially supported by the National Natural Science Fund (81701089, 30960504), the Guangxi Scientific Research and Technology Development research projects (0630002-2A), the Guangxi Natural Science Foundation (2017GXNSFBA198010, 2011GXNSFD018030), the Guangxi Sanitation Research Project (Z2016582), the Nanning Science and Technology Research and Production of New Products (No. 201102084C), and the Independent Research and Development Project of Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards (201606). The experiments comply with the current laws of China.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    O’Brien CP, McLellan AT (1996) Myths about the treatment of addiction. Lancet 347(8996):237–240CrossRefPubMedGoogle Scholar
  2. 2.
    Darrow JJ, Kesselheim AS (2015) A new wave of vaccines for non-communicable diseases: what are the regulatory challenges? Food Drug Law J 70(2):243–258PubMedGoogle Scholar
  3. 3.
    Sofuoglu M, Kosten TR (2006) Emerging pharmacological strategies in the fight against cocaine addiction. Expert Opin Emerg Drugs 11(1):91–98CrossRefPubMedGoogle Scholar
  4. 4.
    Peru YCdPRL, Ojelade SA, Penninti PS, Dove RJ, Nye MJ, Acevedo SF, Lopez A, Rodan AR, Rothenfluh A (2014) Long-lasting, experience-dependent alcohol preference in Drosophila. Addict Biol 19(3):392–401CrossRefGoogle Scholar
  5. 5.
    Han H, Dong Z, Jia Y, Mao R, Zhou Q, Yang Y, Wang L, Xu L, Cao J (2015) Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci Rep 5:(9666)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR (2011) Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 21(12):2665–2680CrossRefPubMedGoogle Scholar
  7. 7.
    Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36(2):229–240CrossRefPubMedGoogle Scholar
  8. 8.
    Sadeghzadeh F, Babapour V, Haghparast A (2015) Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats. Behav Brain Res 287:172–181CrossRefPubMedGoogle Scholar
  9. 9.
    Chen W, Nong Z, Li Y, Huang J, Chen C, Huang L (2017) Role of dopamine signaling in drug addiction. Curr Top Med Chem 17(21):2440–2455. PubMedGoogle Scholar
  10. 10.
    Lintas A, Chi N, Lauzon NM, Bishop SF, Gholizadeh S, Sun N, Tan H, Laviolette SR (2011) Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. J Neurosci 31(31):11172–11183CrossRefPubMedGoogle Scholar
  11. 11.
    Sibley DR, Monsma FJ Jr, Shen Y (1993) Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 35:391–415CrossRefPubMedGoogle Scholar
  12. 12.
    McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci 6(11):1208–1215CrossRefPubMedGoogle Scholar
  13. 13.
    Lin X, Huang Z, Chen X, Rong Y, Zhang S, Jiao Y, Huang Q, Huang R (2014) Protective effect of Millettia pulchra polysaccharide on cognitive impairment induced by D-galactose in mice. Carbohydr Polym 101:533–543CrossRefPubMedGoogle Scholar
  14. 14.
    Doan VM, Chen C, Lin X, Nguyen VP, Nong Z, Li W, Chen Q, Ming J, Xie Q, Huang R (2015) Yulangsan polysaccharide improves redox homeostasis and immune impairment in D-galactose-induced mimetic aging. Food Funct 6(5):1712–1718CrossRefPubMedGoogle Scholar
  15. 15.
    Chen C, Nong Z, Meng M, Wen Q, Lin X, Qin F, Huang J, Huang R (2015) Toxicological evaluation of Yulangsan polysaccharide in Wistar rats: a 26-week oral gavage study. Environ Toxicol Pharmacol 41:1–7CrossRefPubMedGoogle Scholar
  16. 16.
    Chen C, Nong Z, Huang J, Chen Z, Zhang S, Jiao Y, Chen X, Huang R (2014) Yulangsan polysaccharide attenuates withdrawal symptoms and regulates the NO pathway in morphine-dependent rats. Neurosci Lett 570:63–68CrossRefPubMedGoogle Scholar
  17. 17.
    Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1(4):1662–1670CrossRefPubMedGoogle Scholar
  18. 18.
    Mattioli L, Titomanlio F, Perfumi M (2012) Effects of a Rhodiola rosea L. extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology 221(2):183–193CrossRefPubMedGoogle Scholar
  19. 19.
    Feily A, Abbasi N (2009) The inhibitory effect of Hypericum perforatum extract on morphine withdrawal syndrome in rat and comparison with clonidine. Phytother Res 23(11):1549–1552CrossRefPubMedGoogle Scholar
  20. 20.
    Kowalczyk WJ, Phillips KA, Jobes ML, Kennedy AP, Ghitza UE, Agage DA, Schmittner JP, Epstein DH, Preston KL (2015) Clonidine maintenance prolongs opioid abstinence and decouples stress from craving in daily life: a randomized controlled trial with ecological momentary assessment. Am J Psychiatry 172(8):760–767. CrossRefPubMedGoogle Scholar
  21. 21.
    George P, Charles W (1998) The rat brain in stereotaxic coordinates (Qingchuan Zhuge translate. People’s Medical Publishing House, Beijing, 2007), p 32Google Scholar
  22. 22.
    Canestrelli C, Marie N, Noble F (2014) Rewarding or aversive effects of buprenorphine/naloxone combination (Suboxone) depend on conditioning trial duration. Int J Neuropsychopharmacol 17(9):1367–1373CrossRefPubMedGoogle Scholar
  23. 23.
    Yahyavi-Firouz-Abadi N, See RE (2009) Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacol Ther 124(2):235–247CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shen F, Wang N, Qi C, Li YJ, Cui CL (2014) The NO/sGC/PKG signaling pathway in the NAc shell is necessary for the acquisition of morphine-induced place preference. Behav Neurosci 128(4):446–459CrossRefPubMedGoogle Scholar
  25. 25.
    Shen F, Li YJ, Shou XJ, Cui CL (2012) Role of the NO/sGC/PKG signaling pathway of hippocampal CA1 in morphine-induced reward memory. Neurobiol Learn Mem 98(2):130–138CrossRefPubMedGoogle Scholar
  26. 26.
    Chen C, Fan Q, Nong Z, Chen W, Li Y, Huang L, Feng D, Pan X, Lan S (2018) Hyperbaric oxygen attenuates withdrawal symptoms by regulating monoaminergic neurotransmitters and NO signaling pathway at nucleus accumbens in morphine-dependent rats. Neurochem Res. Google Scholar
  27. 27.
    Itzhak Y (2008) Role of the NMDA receptor and nitric oxide in memory reconsolidation of cocaine-induced conditioned place preference in mice. Ann N Y Acad Sci 1139:350–357CrossRefPubMedGoogle Scholar
  28. 28.
    Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74(8):3203–3207CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gholami A, Haeri-Rohani A, Sahraie H, Zarrindast MR (2002) Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur J Pharmacol 449(3):269–277CrossRefPubMedGoogle Scholar
  30. 30.
    Yang HY, Pu XP (2009) Chronic morphine administration induces over-expression of aldolase C with reduction of CREB phosphorylation in the mouse hippocampus. Eur J Pharmacol 609(1–3):51–57CrossRefPubMedGoogle Scholar
  31. 31.
    Manzanedo C, Aguilar MA, Rodriguez-Arias M, Minarro J (2005) Sensitization to the rewarding effects of morphine depends on dopamine. Neuroreport 16(2):201–205CrossRefPubMedGoogle Scholar
  32. 32.
    Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445CrossRefPubMedGoogle Scholar
  33. 33.
    Lu YF, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19(23):10250–10261CrossRefPubMedGoogle Scholar
  34. 34.
    Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47(6):873–884CrossRefPubMedGoogle Scholar
  35. 35.
    Jancic D, Lopez de Armentia M, Valor LM, Olivares R, Barco A (2009) Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex 19(11):2535–2547CrossRefPubMedGoogle Scholar
  36. 36.
    Shinohara F, Kihara Y, Ide S, Minami M, Kaneda K (2014) Critical role of cholinergic transmission from the laterodorsal tegmental nucleus to the ventral tegmental area in cocaine-induced place preference. Neuropharmacology 79:573–579CrossRefPubMedGoogle Scholar
  37. 37.
    Ventura R, Alcaro A, Puglisi-Allegra S (2005) Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex 15(12):1877–1886CrossRefPubMedGoogle Scholar
  38. 38.
    Pina MM, Cunningham CL (2014) Effects of dopamine receptor antagonists on the acquisition of ethanol-induced conditioned place preference in mice. Psychopharmacology 231(3):459–468CrossRefPubMedGoogle Scholar
  39. 39.
    Esmaeili MH, Kermani M, Parvishan A, Haghparast A (2012) Role of D1/D2 dopamine receptors in the CA1 region of the rat hippocampus in the rewarding effects of morphine administered into the ventral tegmental area. Behav Brain Res 231(1):111–115CrossRefPubMedGoogle Scholar
  40. 40.
    Galaj E, Manuszak M, Arastehmanesh D, Ranaldi R (2014) Microinjections of a dopamine D1 receptor antagonist into the ventral tegmental area block the expression of cocaine conditioned place preference in rats. Behav Brain Res 272:279–285CrossRefPubMedGoogle Scholar
  41. 41.
    Drago J, Gerfen CR, Westphal H, Steiner H (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74(3):813–823CrossRefPubMedGoogle Scholar
  42. 42.
    Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 18(6):2231–2238CrossRefPubMedGoogle Scholar
  43. 43.
    Ford CP, Gantz SC, Phillips PE, Williams JT (2010) Control of extracellular dopamine at dendrite and axon terminals. J Neurosci 30(20):6975–6983CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schmitz Y, Benoit-Marand M, Gonon F, Sulzer D (2003) Presynaptic regulation of dopaminergic neurotransmission. J Neurochem 87(2):273–289CrossRefPubMedGoogle Scholar
  45. 45.
    Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388(6642):586–589CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chunxia Chen
    • 1
    • 2
  • Zhihuan Nong
    • 1
  • Xingmei Liang
    • 1
  • Mingyu Meng
    • 1
  • Feifei Xuan
    • 1
  • Qiuqiao Xie
    • 1
  • Junhui He
    • 1
  • Renbin Huang
    • 1
  1. 1.Department of PharmacologyGuangxi Medical UniversityNanningPeople’s Republic of China
  2. 2.Department of Hyperbaric OxygenThe People’s Hospital of Guangxi Zhuang Autonomous RegionNanningPeople’s Republic of China

Personalised recommendations