Advertisement

Neurochemical Research

, Volume 43, Issue 4, pp 904–917 | Cite as

Gastrodin Suppresses Pentylenetetrazole-Induced Seizures Progression by Modulating Oxidative Stress in Zebrafish

  • Meng Jin
  • Qiuxia He
  • Shanshan Zhang
  • Yixuan Cui
  • Liwen Han
  • Kechun Liu
Original Paper

Abstract

Pentylenetetrazole (PTZ)-induced seizures in Zebrafish models are now widely accepted for investigating human disease epilepsy. In epilepsy, the generation of oxidative stress contributes to the brain injury. Although Gastrodin (GAS) has been reported to have anticonvulsant activities, its effects on zebrafish seizure models and the underlying mechanism remain unclear. In this study, we evaluated the effects of GAS pretreatment on PTZ-induced seizures in zebrafish larvae and investigated the underlying mechanism related to its anti-oxidative defense. We found for the first time that GAS significantly decreased seizure-like behavior and extended the latency period to the onset of seizures. In addition, after exposure to GAS, anti-oxidative activity was observed in PTZ-induced seizures by measurement of antioxidant enzymes activities and oxidative stress-related genes expression. The overall results indicate that GAS attenuates PTZ-induced seizures in a concentration-dependent manner and modulates oxidative stress to potentially protect larval zebrafish from further seizures. Furthermore, our results have provided novel insights into GAS related therapy of seizures and associated neurological disorders.

Keywords

Gastrodin Seizures Oxidative stress Zebrafish 

Notes

Acknowledgements

We thank Ximin Wang for zebrafish maintenance. We are grateful to Dr. Ming Fa for critical reading and editing of manuscript, Dr. Wenlong Sheng and Dr. Rongchun Wang for technical help. We thank the Youth Fund of Shandong Academy of Sciences (No. 2018QN0024) for financial support.

Author Contributions

MJ, KCL, LWH, and QXH conceived the project and designed the experiments. MJ and YXC performed the experiments and analyzed the data. MJ wrote the manuscript. SSZ provided expertise on antiepileptic drugs and seizure induction experiments.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11064_2018_2496_MOESM1_ESM.docx (476 kb)
Supplementary material 1 (DOCX 475 KB)

References

  1. 1.
    Moshe SL, Perucca E, Ryvlin P, Tomson T (2015) Epilepsy: new advances. Lancet 385(9971):884–898.  https://doi.org/10.1016/S0140-6736(14)60456-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Loscher W (2016) Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 126:157–184.  https://doi.org/10.1016/j.eplepsyres.2016.05.016 CrossRefPubMedGoogle Scholar
  3. 3.
    Jobe PC, Mishra PK, Ludvig N, Dailey JW (1991) Scope and contribution of genetic models to an understanding of the epilepsies. Crit Rev Neurobiol 6(3):183–220PubMedGoogle Scholar
  4. 4.
    Schwartzkroin PA, Roper SN, Wenzel HJ (2004) Cortical dysplasia and epilepsy: animal models. Adv Exp Med Biol 548:145–174CrossRefPubMedGoogle Scholar
  5. 5.
    Grone BP, Baraban SC (2015) Animal models in epilepsy research: legacies and new directions. Nat Neurosci 18(3):339–343.  https://doi.org/10.1038/nn.3934 CrossRefPubMedGoogle Scholar
  6. 6.
    Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768.  https://doi.org/10.1016/j.neuroscience.2004.11.031 CrossRefPubMedGoogle Scholar
  7. 7.
    Auvin S, Pineda E, Shin D, Gressens P, Mazarati A (2012) Novel animal models of pediatric epilepsy. Neurotherapeutics 9(2):245–261.  https://doi.org/10.1007/s13311-012-0119-8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Loscher W, Honack D (1993) Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 232(2–3):147–158CrossRefPubMedGoogle Scholar
  9. 9.
    Hardy BT, Patterson EE, Cloyd JM, Hardy RM, Leppik IE (2012) Double-masked, placebo-controlled study of intravenous levetiracetam for the treatment of status epilepticus and acute repetitive seizures in dogs. J Vet Internal Med 26(2):334–340.  https://doi.org/10.1111/j.1939-1676.2011.00868.x CrossRefGoogle Scholar
  10. 10.
    Baraban SC, Loscher W (2014) What new modeling approaches will help us identify promising drug treatments? Adv Exp Med Biol 813:283–294.  https://doi.org/10.1007/978-94-017-8914-1_23 CrossRefPubMedGoogle Scholar
  11. 11.
    Chen PZ, Jiang HH, Wen B, Ren SC, Chen Y, Ji WG, Hu B, Zhang J, Xu F, Zhu ZR (2014) Gastrodin suppresses the amyloid beta-induced increase of spontaneous discharge in the entorhinal cortex of rats. Neural Plast 2014:320937.  https://doi.org/10.1155/2014/320937 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang XL, Xing GH, Hong B, Li XM, Zou Y, Zhang XJ, Dong MX (2014) Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson’s disease: involvement of ERK1/2-Nrf2 signaling pathway. Life Sci 114(2):77–85.  https://doi.org/10.1016/j.lfs.2014.08.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Wu Z, Liu X, Fu Q (2013) Gastrodin ameliorates Parkinson’s disease by downregulating connexin 43. Mol Med Rep 8(2):585–590.  https://doi.org/10.3892/mmr.2013.1535 CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar H, Kim IS, More SV, Kim BW, Bahk YY, Choi DK (2013) Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid Based Complement Altern Med 2013:514095.  https://doi.org/10.1155/2013/514095 CrossRefGoogle Scholar
  15. 15.
    Hu Y, Li C, Shen W (2014) Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology 34(4):370–377.  https://doi.org/10.1111/neup.12115 PubMedGoogle Scholar
  16. 16.
    Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q (2014) Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75:79–88.  https://doi.org/10.1016/j.neuint.2014.06.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Ojemann LM, Nelson WL, Shin DS, Rowe AO, Buchanan RA (2006) Tian ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav 8(2):376–383.  https://doi.org/10.1016/j.yebeh.2005.12.009 CrossRefPubMedGoogle Scholar
  18. 18.
    Fang H, Zhang JC, Yang M, Li HF, Zhang JP, Zhang FX, Wang QY, Wang RR, Liu J (2016) Perfusion of gastrodin in abdominal aorta for alleviating spinal cord ischemia reperfusion injury. Asian Pac J Trop Med 9(7):688–693.  https://doi.org/10.1016/j.apjtm.2016.05.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T, Tan Q, Hai C (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res 40(4):661–673.  https://doi.org/10.1007/s11064-015-1513-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Qiu F, Liu TT, Qu ZW, Qiu CY, Yang Z, Hu WP (2014) Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons. Eur J Pharmacol 731:50–57.  https://doi.org/10.1016/j.ejphar.2014.02.044 CrossRefPubMedGoogle Scholar
  21. 21.
    Sun W, Miao B, Wang XC, Duan JH, Ye X, Han WJ, Wang WT, Luo C, Hu SJ (2012) Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PloS ONE 7(6):e39647.  https://doi.org/10.1371/journal.pone.0039647 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu X, Lu Y, Bie X (2007) Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons. Planta Medica 73(7):650–654.  https://doi.org/10.1055/s-2007-981523 CrossRefPubMedGoogle Scholar
  23. 23.
    An SJ, Park SK, Hwang IK, Choi SY, Kim SK, Kwon OS, Jung SJ, Baek NI, Lee HY, Won MH, Kang TC (2003) Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J Neurosci Res 71(4):534–543.  https://doi.org/10.1002/jnr.10502 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen L, Liu X, Wang H, Qu M (2017) Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neurosci Bull 33(3):264–272.  https://doi.org/10.1007/s12264-016-0084-z CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou Z, Lin Y, Zheng H, He Y, Xu H, Zhang S, Weng W, Li W, Zhu L, Yang H (2015) Anticonvulsive and neuroprotective effects of synergetic combination of phenytoin and gastrodin on the convulsion induced by penicillin in mice. Fundam Clin Pharmacol 29(4):371–381.  https://doi.org/10.1111/fcp.12127 CrossRefPubMedGoogle Scholar
  26. 26.
    Shao H, Yang Y, Qi AP, Hong P, Zhu GX, Cao XY, Ji WG, Zhu ZR (2017) Gastrodin reduces the severity of status epilepticus in the rat pilocarpine model of temporal lobe epilepsy by inhibiting Nav1.6 sodium currents. Neurochem Res 42(2):360–374.  https://doi.org/10.1007/s11064-016-2079-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Shao YY, Li B, Huang YM, Luo Q, Xie YM, Chen YH (2017) Thymoquinone attenuates brain injury via an anti-oxidative pathway in a status epilepticus rat model. Transl Neurosci 8:9–14.  https://doi.org/10.1515/tnsci-2017-0003 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mazhar F, Malhi SM, Simjee SU (2017) Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice. J Basic Clin Physiol Pharmacol 28(1):31–42.  https://doi.org/10.1515/jbcpp-2016-0034 CrossRefPubMedGoogle Scholar
  29. 29.
    Santos IM, Tome Ada R, Saldanha GB, Ferreira PM, Militao GC, Freitas RM (2009) Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. Oxid Med Cell Longev 2(4):214–221.  https://doi.org/10.4161/oxim.2.4.8876 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Migliore L, Fontana I, Colognato R, Coppede F, Siciliano G, Murri L (2005) Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol Aging 26(5):587–595.  https://doi.org/10.1016/j.neurobiolaging.2004.10.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9(2):244–248.  https://doi.org/10.1006/nbdi.2002.0466 CrossRefPubMedGoogle Scholar
  32. 32.
    Perry G, Nunomura A, Hirai K, Zhu X, Perez M, Avila J, Castellani RJ, Atwood CS, Aliev G, Sayre LM, Takeda A, Smith MA (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 33(11):1475–1479CrossRefPubMedGoogle Scholar
  33. 33.
    Perry G, Taddeo MA, Nunomura A, Zhu X, Zenteno-Savin T, Drew KL, Shimohama S, Avila J, Castellani RJ, Smith MA (2002) Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp Biochem Physiol Toxicol Pharmacol 133(4):507–513CrossRefGoogle Scholar
  34. 34.
    Zhang QF, Li YW, Liu ZH, Chen QL (2016) Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae. Aquatic Toxicol 181:76–85.  https://doi.org/10.1016/j.aquatox.2016.10.029 CrossRefGoogle Scholar
  35. 35.
    Peternel S, Pilipovic K, Zupan G (2009) Seizure susceptibility and the brain regional sensitivity to oxidative stress in male and female rats in the lithium-pilocarpine model of temporal lobe epilepsy. Prog Neuro-psychopharmacol Biol Psychiatry 33(3):456–462.  https://doi.org/10.1016/j.pnpbp.2009.01.005 CrossRefGoogle Scholar
  36. 36.
    Dal-Pizzol F, Klamt F, Vianna MM, Schroder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291(3):179–182CrossRefPubMedGoogle Scholar
  37. 37.
    Pazdernik TL, Emerson MR, Cross R, Nelson SR, Samson FE (2001) Soman-induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 21(Suppl 1):S87–S94CrossRefPubMedGoogle Scholar
  38. 38.
    Lapin IP, Mirzaev SM, Ryzov IV, Oxenkrug GF (1998) Anticonvulsant activity of melatonin against seizures induced by quinolinate, kainate, glutamate, NMDA, and pentylenetetrazole in mice. J Pineal Res 24(4):215–218CrossRefPubMedGoogle Scholar
  39. 39.
    Westerfield M (1993) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon, EugeneGoogle Scholar
  40. 40.
    Siebel AM, Menezes FP, da Costa Schaefer I, Petersen BD, Bonan CD (2015) Rapamycin suppresses PTZ-induced seizures at different developmental stages of zebrafish. Pharmacol Biochem Behav 139(Pt B):163–168.  https://doi.org/10.1016/j.pbb.2015.05.022 CrossRefPubMedGoogle Scholar
  41. 41.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  42. 42.
    Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70(2):616–620CrossRefPubMedGoogle Scholar
  43. 43.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  44. 44.
    Jaskot RH, Charlet EG, Grose EC, Grady MA, Roycroft JH (1983) An automated analysis of glutathione peroxidase, S-transferase, and reductase activity in animal tissue. J Anal Toxicol 7(2):86–88CrossRefPubMedGoogle Scholar
  45. 45.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefPubMedGoogle Scholar
  46. 46.
    Li JM, Shah AM (2001) Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Cardiovasc Res 52(3):477–486CrossRefPubMedGoogle Scholar
  47. 47.
    Afrikanova T, Serruys AS, Buenafe OE, Clinckers R, Smolders I, de Witte PA, Crawford AD, Esguerra CV (2013) Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PloS ONE 8(1):e54166.  https://doi.org/10.1371/journal.pone.0054166 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75(1):18–28.  https://doi.org/10.1016/j.eplepsyres.2007.03.015 CrossRefPubMedGoogle Scholar
  49. 49.
    Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50(2–3):83–107CrossRefPubMedGoogle Scholar
  50. 50.
    Kovac S, Domijan AM, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 5:e1442.  https://doi.org/10.1038/cddis.2014.390 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD (2009) Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 11(10):2535–2552.  https://doi.org/10.1089/ARS.2009.2585 CrossRefPubMedGoogle Scholar
  52. 52.
    Du F, Wang X, Shang B, Fang J, Xi Y, Li A, Diao Y (2016) Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects. Acta Biochimica Polonica 63(3):589–593.  https://doi.org/10.18388/abp.2016_1272 CrossRefPubMedGoogle Scholar
  53. 53.
    Li Y, Zhang Z (2015) Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia. Int J Clin Exp Pathol 8(11):14099–14109PubMedPubMedCentralGoogle Scholar
  54. 54.
    Qu LL, Yu B, Li Z, Jiang WX, Jiang JD, Kong WJ (2016) Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother Res 30(3):402–411.  https://doi.org/10.1002/ptr.5541 CrossRefPubMedGoogle Scholar
  55. 55.
    Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7(3–4):385–394.  https://doi.org/10.1089/ars.2005.7.385 CrossRefPubMedGoogle Scholar
  56. 56.
    Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309.  https://doi.org/10.1016/j.freeradbiomed.2009.07.035 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M (2002) Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells Devot Mol Cell Mech 7(8):807–820CrossRefGoogle Scholar
  58. 58.
    Realmuto S, Zummo L, Cerami C, Agro L, Dodich A, Canessa N, Zizzo A, Fierro B, Daniele O (2015) Social cognition dysfunctions in patients with epilepsy: evidence from patients with temporal lobe and idiopathic generalized epilepsies. Epilepsy Behav 47:98–103.  https://doi.org/10.1016/j.yebeh.2015.04.048 CrossRefPubMedGoogle Scholar
  59. 59.
    Austin JK, Dunn DW (2002) Progressive behavioral changes in children with epilepsy. Prog Brain Res 135:419–427.  https://doi.org/10.1016/S0079-6123(02)35039-8 CrossRefPubMedGoogle Scholar
  60. 60.
    Hunt RF, Hortopan GA, Gillespie A, Baraban SC (2012) A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp Neurol 237(1):199–206.  https://doi.org/10.1016/j.expneurol.2012.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137(Pt 8):2210–2230.  https://doi.org/10.1093/brain/awu133 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Schauwecker PE (2011) The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res 97(1–2):1–11.  https://doi.org/10.1016/j.eplepsyres.2011.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Deshpande LS, Lou JK, Mian A, Blair RE, Sombati S, Attkisson E, DeLorenzo RJ (2008) Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: role of NMDA receptor activation and NMDA dependent calcium entry. Eur J Pharmacol 583(1):73–83.  https://doi.org/10.1016/j.ejphar.2008.01.025 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wong SB, Hung WC, Min MY (2016) The role of gastrodin on hippocampal neurons after N-Methyl-D-Aspartate excitotoxicity and experimental temporal lobe seizures. Chin J Physiol 59(3):156–164.  https://doi.org/10.4077/CJP.2016.BAE385 CrossRefPubMedGoogle Scholar
  65. 65.
    Torres-Hernandez BA, Del Valle-Mojica LM, Ortiz JG (2015) Valerenic acid and Valeriana officinalis extracts delay onset of pentylenetetrazole (PTZ)-Induced seizures in adult Danio rerio (Zebrafish). BMC Complem Altern Med 15:228.  https://doi.org/10.1186/s12906-015-0731-3 CrossRefGoogle Scholar
  66. 66.
    Kim JH, Jang BG, Choi BY, Kim HS, Sohn M, Chung TN, Choi HC, Song HK, Suh SW (2013) Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death. Brain Res 1499:163–172.  https://doi.org/10.1016/j.brainres.2013.01.007 CrossRefPubMedGoogle Scholar
  67. 67.
    Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674(1–2):137–147.  https://doi.org/10.1016/j.mrgentox.2008.09.015 CrossRefPubMedGoogle Scholar
  68. 68.
    Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30.  https://doi.org/10.1016/j.aquatox.2010.10.006 CrossRefPubMedGoogle Scholar
  69. 69.
    Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650.  https://doi.org/10.1080/01926230290166724 CrossRefPubMedGoogle Scholar
  70. 70.
    Diaz-Ruiz A, Mendez-Armenta M, Galvan-Arzate S, Manjarrez J, Nava-Ruiz C, Santander I, Balderas G, Rios C (2013) Antioxidant, anticonvulsive and neuroprotective effects of dapsone and phenobarbital against kainic acid-induced damage in rats. Neurochem Res 38(9):1819–1827.  https://doi.org/10.1007/s11064-013-1087-z CrossRefPubMedGoogle Scholar
  71. 71.
    Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136–137:49–59.  https://doi.org/10.1016/j.aquatox.2013.03.019 CrossRefPubMedGoogle Scholar
  72. 72.
    Keskin Guler S, Aytac B, Durak ZE, Gokce Cokal B, Gunes N, Durak I, Yoldas T (2016) Antioxidative-oxidative balance in epilepsy patients on antiepileptic therapy: a prospective case-control study. Neurol Sci 37(5):763–767.  https://doi.org/10.1007/s10072-016-2494-0 CrossRefPubMedGoogle Scholar
  73. 73.
    Wang L, Gallagher EP (2013) Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Toxicol Appl Pharmacol 266(2):177–186.  https://doi.org/10.1016/j.taap.2012.11.010 CrossRefPubMedGoogle Scholar
  74. 74.
    Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1–2):31–39.  https://doi.org/10.1016/j.mrrev.2007.11.006 CrossRefPubMedGoogle Scholar
  75. 75.
    Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD, Sun J, Lu D (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PloS ONE 6(7):e21891.  https://doi.org/10.1371/journal.pone.0021891 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yang P, Han Y, Gui L, Sun J, Chen YL, Song R, Guo JZ, Xie YN, Lu D, Sun L (2013) Gastrodin attenuation of the inflammatory response in H9c2 cardiomyocytes involves inhibition of NF-kappaB and MAPKs activation via the phosphatidylinositol 3-kinase signaling. Biochem Pharmacol 85(8):1124–1133.  https://doi.org/10.1016/j.bcp.2013.01.020 CrossRefPubMedGoogle Scholar
  77. 77.
    Baek NI, Choi SY, Park JK, Cho SW, Ahn EM, Jeon SG, Lee BR, Bahn JH, Kim YK, Shon IH (1999) Isolation and identification of succinic semialdehyde dehydrogenase inhibitory compound from the rhizome of Gastrodia elata Blume. Arch Pharm Res 22(2):219–224CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  2. 2.Key Laboratory for Drug Screening Technology of Shandong Academy of SciencesJinanPeople’s Republic of China

Personalised recommendations