Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, Faraone SV, Greenhill LL, Howes MJ, Secnik K, Spencer T, Ustun TB, Walters EE, Zaslavsky AM (2006) The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 163(4):716–723
Article
PubMed
PubMed Central
Google Scholar
Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948
Article
PubMed
Google Scholar
Biederman J, Petty CR, Clarke A, Lomedico A, Faraone SV (2011) Predictors of persistent ADHD: an 11-year follow-up study. J Psychiatr Res 45(2):150–155
Article
PubMed
Google Scholar
Biederman J, Petty CR, Evans M, Small J, Faraone SV (2010) How persistent is ADHD? A controlled 10-year follow-up study of boys with ADHD. Psychiatry Res 177(3):299–304
Article
PubMed
PubMed Central
Google Scholar
De Sousa A, Kalra G (2012) Drug therapy of attention deficit hyperactivity disorder: current trends. Mens Sana Monogr 10(1):45–69
Article
PubMed
PubMed Central
Google Scholar
Collins RJ, Weeks JR, Cooper MM, Good PI, Russell RR (1984) Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology 82(1–2):6–13
CAS
PubMed
Google Scholar
Fredericks EM, Kollins SH (2004) Assessing methylphenidate preference in ADHD patients using a choice procedure. Psychopharmacology 175(4):391–398
CAS
PubMed
Google Scholar
Wilens TE, Faraone SV, Biederman J, Gunawardene S (2003) Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature. Pediatrics 111(1):179–185
Article
PubMed
Google Scholar
Kollins SH, MacDonald EK, Rush CR (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 68(3):611–627
Article
CAS
PubMed
Google Scholar
Kollins SH (2008) A qualitative review of issues arising in the use of psycho-stimulant medications in patients with ADHD and co-morbid substance use disorders. Curr Med Res Opin 24(5):1345–1357
Article
PubMed
Google Scholar
Harvey RC, Sen S, Deaciuc A, Dwoskin LP, Kantak KM (2011) Methylphenidate treatment in adolescent rats with an attention deficit/hyperactivity disorder phenotype: cocaine addiction vulnerability and dopamine transporter function. Neuropsychopharmacology 36(4):837–847
Article
CAS
PubMed
Google Scholar
Cascade E, Kalali AH, Wigal SB (2010) Real-world data on: attention deficit hyperactivity disorder medication side effects. Psychiatry 7(4):13–15
PubMed
Google Scholar
Russell VA (2001) Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis 16(3–4):143–149
Article
CAS
PubMed
Google Scholar
Lehohla M, Kellaway L, Russell VA (2004) NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder. Metab Brain Dis 19(1–2):35–42
Article
CAS
PubMed
Google Scholar
Warton FL, Howells FM, Russell VA (2009) Increased glutamate-stimulated release of dopamine in substantia nigra of a rat model for attention-deficit/hyperactivity disorder-lack of effect of methylphenidate. Metab Brain Dis 24(4):599–613
Article
CAS
PubMed
Google Scholar
Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PE (2014). Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology 231(15):3019–3029
Article
CAS
PubMed
Google Scholar
Burmeister JJ, Davis VA, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA (2013) Glutaraldehyde cross-linked glutamate oxidase coated microelectrode arrays: selectivity and resting levels of glutamate in the CNS. ACS Chem Neurosci 4(5):721–728
Article
CAS
PubMed
PubMed Central
Google Scholar
Rutherford EC, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102(3):712–722
Article
CAS
PubMed
PubMed Central
Google Scholar
Hascup KN, Hascup ER, Stephens ML, Glaser PE, Yoshitake T, Mathe AA, Gerhardt GA, Kehr J (2011) Resting glutamate levels and rapid glutamate transients in the prefrontal cortex of the flinders sensitive line rat: a genetic rodent model of depression. Neuropsychopharmacology 36(8):1769–1777
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinzman JM, Thomas TC, Burmeister JJ, Quintero JE, Huettl P, Pomerleau F, Gerhardt GA, Lifshitz J (2010) Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 27(5):889–899
Article
PubMed
PubMed Central
Google Scholar
Paxinos G, Watson C (2009). The rat brain in stereotaxic coordinates. Academic Press/Elsevier, Amsterdam
Google Scholar
Swanson JM, Volkow ND (2002) Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res 130(1–2):73–78
Article
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS (2005) Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry 57(11):1391–1396
Article
CAS
PubMed
Google Scholar
Wargin W, Patrick K, Kilts C, Gualtieri CT, Ellington K, Mueller RA, Kraemer G, Breese GR (1983) Pharmacokinetics of methylphenidate in man, rat and monkey. J Pharmacol Exp Ther 226(2):382–386
CAS
PubMed
Google Scholar
Jensen GB, Collier GH, Medvin MB (1983) A cost-benefit analysis of nocturnal feeding in the rat. Physiol Behav 31(4):555–559
Article
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296(3):876–883
CAS
PubMed
Google Scholar
Mc Fie S, Sterley TL, Howells FM, Russell VA (2012) Clozapine decreases exploratory activity and increases anxiety-like behaviour in the Wistar-Kyoto rat but not the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Brain Res 1467:91–103
Article
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22(16):7264–7271
Article
CAS
PubMed
Google Scholar
Johansen EB, Sagvolden T, Kvande G (2005) Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res 162(1):47–61
Article
PubMed
Google Scholar
Howells FM, Bindewald L, Russell VA (2009) Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav Brain Funct 5:24
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang PB, Amini B, Swann AC, Dafny N (2003) Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res 971(2):139–152
Article
CAS
PubMed
Google Scholar
Amini B, Yang PB, Swann AC, Dafny N (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci 114(9):1063–1084
Article
CAS
PubMed
Google Scholar
Knardahl S, Sagvolden T (1981) Regarding hyperactivity of the SHR in the open-field test. Behav Neural Biol 32(2):274–275
Article
CAS
PubMed
Google Scholar
Sagvolden T, Pettersen MB, Larsen MC (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 54(6):1047–1055
Article
CAS
PubMed
Google Scholar
Pulvirenti L, Swerdlow NR, Koob GF (1989) Microinjection of a glutamate antagonist into the nucleus accumbens reduces psychostimulant locomotion in rats. Neurosci Lett 103(2):213–218
Article
CAS
PubMed
Google Scholar
Pulvirenti L, Swerdlow NR, Koob GF (1991) Nucleus accumbens NMDA antagonist decreases locomotor activity produced by cocaine, heroin or accumbens dopamine, but not caffeine. Pharmacol Biochem Behav 40(4):841–845
Article
CAS
PubMed
Google Scholar
Witkin JM (1993) Blockade of the locomotor stimulant effects of cocaine and methamphetamine by glutamate antagonists. Life Sci 53(24):PL405-410
Article
Google Scholar
Somkuwar SS, Jordan CJ, Kantak KM, Dwoskin LP (2013) Adolescent atomoxetine treatment in a rodent model of ADHD: effects on cocaine self-administration and dopamine transporters in frontostriatal regions. Neuropsychopharmacology 38(13):2588–2597
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin HC, Wang SJ, Luo MZ, Gean PW (2000) Activation of group II metabotropic glutamate receptors induces long-term depression of synaptic transmission in the rat amygdala. J Neurosci 20(24):9017–9024
Article
CAS
PubMed
Google Scholar
Johnson KA, Niswender CM, Conn PJ, Xiang Z (2011) Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neurosci Lett 504(2):102–106
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang ZQ, Liu YW, Shi W, Dinh EH, Hamlet WR, Curry RJ, Lu Y (2013) Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons. J Neurosci 33(40):15964–15977
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4(2):131–144
Article
CAS
PubMed
Google Scholar
Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E (2012) New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 100(4):752–774
Article
CAS
PubMed
Google Scholar
Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263(5):367–377
Article
PubMed
Google Scholar
Chaki S, Ago Y, Palucha-Paniewiera A, Matrisciano F, Pilc A (2013) mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology 66:40–52
Article
CAS
PubMed
Google Scholar
Holmes A, Spanagel R, Krystal JH (2013) Glutamatergic targets for new alcohol medications. Psychopharmacology 229(3):539–554
Article
CAS
PubMed
Google Scholar
Li X, Xi ZX, Markou A (2013) Metabotropic glutamate 7 (mGlu7) receptor: a target for medication development for the treatment of cocaine dependence. Neuropharmacology 66:12–23
Article
CAS
PubMed
Google Scholar
Counotte DS, Goriounova NA, Li KW, Loos M, van der Schors RC, Schetters D, Schoffelmeer AN, Smit AB, Mansvelder HD, Pattij T, Spijker S (2011) Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence. Nat Neurosci 14(4):417–419
Article
CAS
PubMed
Google Scholar
Hascup ER, Hascup KN, Pomerleau F, Huettl P, Hajos-Korcsok E, Kehr J, Gerhardt GA (2012) An allosteric modulator of metabotropic glutamate receptors (mGluR(2)), (+)-TFMPIP, inhibits restraint stress-induced phasic glutamate release in rat prefrontal cortex. J Neurochem 122(3):619–627
Article
CAS
PubMed
PubMed Central
Google Scholar
Koltunowska D, Gibula-Bruzda E, Kotlinska JH (2013) The influence of ionotropic and metabotropic glutamate receptor ligands on anxiety-like effect of amphetamine withdrawal in rats. Prog Neuropsychopharmacol Biol Psychiatry 45:242–249
Article
CAS
PubMed
Google Scholar
Wang MJ, Li YC, Snyder MA, Wang H, Li F, Gao WJ (2013) Group II metabotropic glutamate receptor agonist LY379268 regulates AMPA receptor trafficking in prefrontal cortical neurons. PLoS ONE 8(4):e61787
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68(5):2032–2037
Article
CAS
PubMed
Google Scholar
Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL (2000) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J Pharmacol Exp Ther 295(1):51–57
CAS
PubMed
Google Scholar
Gerasimov MR, Franceschi M, Volkow ND, Rice O, Schiffer WK, Dewey SL (2000) Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 38(4):432–437
Article
CAS
PubMed
Google Scholar
Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21(2):RC121
Article
CAS
PubMed
Google Scholar
Huff JK, Davies MI (2002) Microdialysis monitoring of methylphenidate in blood and brain correlated with changes in dopamine and rat activity. J Pharm Biomed Anal 29(5):767–777
Article
CAS
PubMed
Google Scholar
Marsteller DA, Gerasimov MR, Schiffer WK, Geiger JM, Barnett CR, Schaich Borg J, Scott S, Ceccarelli J, Volkow ND, Molina PE, Alexoff DL, Dewey SL (2002) Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology 27(2):163–170
Article
CAS
PubMed
Google Scholar
Gatley SJ, Pan D, Chen R, Chaturvedi G, Ding YS (1996) Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci 58(12):231–239
Article
CAS
PubMed
Google Scholar
Rebec GV (2006) Behavioral electrophysiology of psychostimulants. Neuropsychopharmacology 31(11):2341–2348
Article
CAS
PubMed
Google Scholar
Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH, MacDonald JF (2002) A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35(6):1111–1122
Article
CAS
PubMed
Google Scholar
Yuen EY, Liu W, Kafri T, van Praag H, Yan Z (2010) Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol 588(Pt 13):2361–2371
Article
CAS
PubMed
PubMed Central
Google Scholar
Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53(1):88–102
Article
CAS
PubMed
Google Scholar
Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 58(2):103–112
Article
CAS
PubMed
Google Scholar
van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83(3):380–390
Article
CAS
PubMed
Google Scholar
Barron E, Yang PB, Swann AC, Dafny N (2009) Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin). Int J Neurosci 119(1):40–58
Article
CAS
PubMed
Google Scholar
Crawford CA, McDougall SA, Meier TL, Collins RL, Watson JB (1998) Repeated methylphenidate treatment induces behavioral sensitization and decreases protein kinase A and dopamine-stimulated adenylyl cyclase activity in the dorsal striatum. Psychopharmacology 136(1):34–43
Article
CAS
PubMed
Google Scholar
Gaytan O, al-Rahim S, Swann A, Dafny N (1997) Sensitization to locomotor effects of methylphenidate in the rat. Life Sci 61(8):PL101–PL107
Article
CAS
PubMed
Google Scholar
McDougall SA, Collins RL, Karper PE, Watson JB, Crawford CA (1999) Effects of repeated methylphenidate treatment in the young rat: sensitization of both locomotor activity and stereotyped sniffing. Exp Clin Psychopharmacol 7(3):208–218
Article
CAS
PubMed
Google Scholar
Suzuki T, Shindo K, Miyatake M, Kurokawa K, Higashiyama K, Suzuki M, Narita M (2007) Lack of development of behavioral sensitization to methylphenidate in mice: correlation with reversible astrocytic activation. Eur J Pharmacol 574(1):39–48
Article
CAS
PubMed
Google Scholar
Wassum KM, Tolosa VM, Tseng TC, Balleine BW, Monbouquette HG, Maidment NT (2012) Transient extracellular glutamate events in the basolateral amygdala track reward-seeking actions. J Neurosci 32(8):2734–2746
Article
CAS
PubMed
PubMed Central
Google Scholar
Shepard GM (2003) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York
Google Scholar