Skip to main content
Log in

Disruption to the 5-HT7 Receptor Following Hypoxia–Ischemia in the Immature Rodent Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has become increasingly evident the serotonergic (5-hydroxytryptamine, 5-HT) system is an important central neuronal network disrupted following neonatal hypoxic–ischemic (HI) insults. Serotonin acts via a variety of receptor subtypes that are differentially associated with behavioural and cognitive mechanisms. The 5-HT7 receptor is purported to play a key role in epilepsy, anxiety, learning and memory and neuropsychiatric disorders. Furthermore, the 5-HT7 receptor is highly localized in brain regions damaged following neonatal HI insults. Utilising our well-established neonatal HI model in the postnatal day 3 (P3) rat pup we demonstrated a significant decrease in levels of the 5-HT7 protein in the frontal cortex, thalamus and brainstem one week after insult. We also observed a relative decrease in both the cytosolic and membrane fractions of 5-HT7. The 5-HT7 receptor was detected on neurons throughout the cortex and thalamus, and 5-HT cell bodies in the brainstem. However we found no evidence of 5-HT7 co-localisation on microglia or astrocytes. Moreover, minocycline treatment did not significantly prevent the HI-induced reductions in 5-HT7. In conclusion, neonatal HI injury caused significant disruption to 5-HT7 receptors in the forebrain and brainstem. Yet the use of minocycline to inhibit activated microglia, did not prevent the HI-induced changes in 5-HT7 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reinebrant HE, Wixey JA, Gobe GC, Colditz PB, Buller KM (2010) Differential effects of neonatal hypoxic-ischemic brain injury on brainstem serotonergic raphe nuclei. Brain Res 1322C:124–133. https://doi.org/10.1016/j.brainres.2010.01.065

    Article  CAS  Google Scholar 

  2. Wixey JA, Reinebrant HE, Buller KM (2011) Inhibition of neuroinflammation prevents injury to the serotonergic network after hypoxia-ischemia in the immature rat brain. J Neuropathol Exp Neurol 70(1):23–35

    Article  CAS  Google Scholar 

  3. Wixey JA, Reinebrant HE, Buller KM (2012) Post-insult ibuprofen treatment attenuates damage to the serotonergic system after hypoxia-ischemia in the immature rat brain. J Neuropathol Exp Neurol 71(12):1137–1148. https://doi.org/10.1097/NEN.0b013e318277d4c7

    Article  CAS  PubMed  Google Scholar 

  4. Reinebrant HE, Wixey JA, Buller KM (2012) Disruption of raphe serotonergic neural projections to the cortex: a potential pathway contributing to remote loss of brainstem neurons following neonatal hypoxic-ischemic brain injury. Eur J Neurosci 36(11):3483–3491. https://doi.org/10.1111/j.1460-9568.2012.08276.x

    Article  PubMed  Google Scholar 

  5. Bellot B, Peyronnet-Roux J, Gire C, Simeoni U, Vinay L, Viemari JC (2014) Deficits of brainstem and spinal cord functions after neonatal hypoxia-ischemia in mice. Pediatr Res 75(6):723–730. https://doi.org/10.1038/pr.2014.42

    Article  CAS  PubMed  Google Scholar 

  6. Drobyshevsky A, Takada SH, Luo K, Derrick M, Yu L, Quinlan KA, Vasquez-Vivar J, Nogueira MI, Tan S (2015) Elevated spinal monoamine neurotransmitters after antenatal hypoxia-ischemia in rabbit cerebral palsy model. J Neurochem 132(4):394–402. https://doi.org/10.1111/jnc.12997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wixey JA, Reinebrant HE, Spencer SJ, Buller KM (2011) Efficacy of post-insult minocycline administration to alter long-term hypoxia-ischemia-induced damage to the serotonergic system in the immature rat brain. Neuroscience 182:184–192. https://doi.org/10.1016/j.neuroscience.2011.03.033

    Article  CAS  PubMed  Google Scholar 

  8. Dahlqvist P, Ronnback A, Risedal A, Nergardh R, Johansson IM, Seckl JR, Johansson BB, Olsson T (2003) Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats. Neuroscience 119(3):643–652

    Article  CAS  Google Scholar 

  9. Cook EH, Leventhal BL (1996) The serotonin system in autism. Curr Opin Pediatr 8(4):348–354

    Article  CAS  Google Scholar 

  10. Lassig JP, Vachirasomtoon K, Hartzell K, Leventhal M, Courchesne E, Courchesne R, Lord C, Leventhal BL, Cook EH Jr (1999) Physical mapping of the serotonin 5-HT(7)receptor gene (HTR7) to chromosome 10 and pseudogene (HTR7P) to chromosome 12, and testing of linkage disequilibrium between HTR7 and autistic disorder. Am J Med Genet 88(5):472–475

    Article  CAS  Google Scholar 

  11. Hedlund PB, Sutcliffe JG (2007) The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci Lett 414(3):247–251. https://doi.org/10.1016/j.neulet.2006.12.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sarkisyan G, Hedlund PB (2009) The 5-HT7 receptor is involved in allocentric spatial memory information processing. Behav Brain Res 202(1):26–31. https://doi.org/10.1016/j.bbr.2009.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB (2011) Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 129(2):120–148. https://doi.org/10.1016/j.pharmthera.2010.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ciranna L, Catania MV (2014) 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders. Front Cell Neurosci 8:250. https://doi.org/10.3389/fncel.2014.00250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH (2015) Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci 16(9):22368–22401. https://doi.org/10.3390/ijms160922368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neumaier JF, Sexton TJ, Yracheta J, Diaz AM, Brownfield M (2001) Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 21(1):63–73

    Article  CAS  Google Scholar 

  17. Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA (1996) A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain. Br J Pharmacol 117(4):657–666

    Article  CAS  Google Scholar 

  18. To ZP, Bonhaus DW, Eglen RM, Jakeman LB (1995) Characterization and distribution of putative 5-ht7 receptors in guinea-pig brain. Br J Pharmacol 115(1):107–116

    Article  CAS  Google Scholar 

  19. Chapin EM, Andrade R (2001) A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J Pharmacol Exp Ther 297(1):403–409

    CAS  PubMed  Google Scholar 

  20. Goaillard JM, Vincent P (2002) Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5-HT(7) receptors. J Physiol 541(Pt 2):453–465

    Article  CAS  Google Scholar 

  21. Shimizu M, Nishida A, Zensho H, Yamawaki S (1996) Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor-mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes. J Pharmacol Exp Ther 279(3):1551–1558

    CAS  PubMed  Google Scholar 

  22. Hirst WD, Price GW, Rattray M, Wilkin GP (1997) Identification of 5-hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes. Br J Pharmacol 120(3):509–515. https://doi.org/10.1038/sj.bjp.0700921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen Z, Bouchelet I, Olivier A, Villemure JG, Ball R, Stanimirovic DB, Hamel E (1999) Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J Cereb Blood Flow Metab 19(8):908–917. https://doi.org/10.1097/00004647-199908000-00010

    Article  CAS  PubMed  Google Scholar 

  24. Lieb K, Biersack L, Waschbisch A, Orlikowski S, Akundi RS, Candelario-Jalil E, Hull M, Fiebich BL (2005) Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells. J Neurochem 93(3):549–559. https://doi.org/10.1111/j.1471-4159.2005.03079.x

    Article  CAS  PubMed  Google Scholar 

  25. Mahe C, Loetscher E, Dev KK, Bobirnac I, Otten U, Schoeffter P (2005) Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells. Neuropharmacology 49(1):40–47. https://doi.org/10.1016/j.neuropharm.2005.01.025

    Article  CAS  PubMed  Google Scholar 

  26. Hagberg H, Gilliaud E, Bona E (1996) Enhanced expression of IL1 and IL6 mRNA and bioactive proteins after hypoxia ischemia in neonatal rats. Ped Res 40:603–609

    Article  CAS  Google Scholar 

  27. McRae A, Gilland E, Bona E, Hagberg H (1995) Microglia activation after neonatal hypoxic-ischemia. Dev Br Res 84:245–252

    Article  CAS  Google Scholar 

  28. Bona E, Andersson AL, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K, Hagberg H (1999) Chemokine and inflammatory cell response to hypoxia ischemia in immature rats. Ped Res 45:500–509

    Article  CAS  Google Scholar 

  29. Cai Z, Pang Y, Xiao F, Rhodes PG (2001) Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. Brain Res 898:126–135

    Article  CAS  Google Scholar 

  30. Fox CK, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S, Ferriero DM, Vexler ZS (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25(9):1140–1151

    Article  Google Scholar 

  31. Cai Z, Lin S, Fan L-W, Pang Y, Rhodes PG (2006) Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 137(2):425–435

    Article  CAS  Google Scholar 

  32. Robinson S, Petelenz K, Li Q, Cohen ML, DeChant A, Tabrizi N, Bucek M, Lust D, Miller RH (2005) Developmental changes induced by graded prenatal systemic hypoxic-ischemic insults in rats. Neurobiol Dis 18(3):568–581

    Article  CAS  Google Scholar 

  33. Fan L-W, Lin S, Pang Y, Rhodes PG, Cai Z (2006) Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat. Eur J Neurosci 24:341–350

    Article  Google Scholar 

  34. Sizonenko SV, Kiss JZ, Inder TE, Gluckman PD, Williams CE (2005) Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic-hypoxic injury in the P3 immature rat brain. Pediatr Res 57:865–872

    Article  CAS  Google Scholar 

  35. Leonardo CC, Eakin AK, Ajmo JM, Collier LA, Pennypacker KR, Strongin AY, Gottschall PE (2008) Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat. J Neuroinflammation 5:34. https://doi.org/10.1186/1742-2094-5-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jantzie LL, Todd KG (2010) Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia-ischemia in neonatal rats. J Psychiatry Neurosci 35(1):20–32

    Article  Google Scholar 

  37. Nijboer CH, Heijnen CJ, Groenendaal F, van Bel F, Kavelaars A (2009) Alternate pathways preserve tumor necrosis factor-alpha production after nuclear factor-kappaB inhibition in neonatal cerebral hypoxia-ischemia. Stroke 40(10):3362–3368. https://doi.org/10.1161/STROKEAHA.109.560250

    Article  CAS  PubMed  Google Scholar 

  38. Buller KM, Wixey JA, Pathipati P, Carty M, Colditz PB, Williams CE, Scheepens A (2008) Selective losses of brainstem catecholamine neurons after hypoxia-ischemia in the immature rat pup. Ped Res 63:364–369

    Article  CAS  Google Scholar 

  39. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  40. Wixey JA, Reinebrant HE, Buller KM (2012) Evidence that the serotonin transporter does not shift into the cytosol of remaining neurons after neonatal brain injury. Neurosci Res 73(3):252–256. https://doi.org/10.1016/j.neures.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  42. Wixey JA, Reinebrant HE, Carty ML, Buller KM (2009) Delayed P2 × 4R expression after hypoxia-ischemia is associated with microglia in the immature rat brain. J Neuroimmunol 212(1–2):35–43. https://doi.org/10.1016/j.jneuroim.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  43. Carty ML, Wixey JA, Colditz PB, Buller KM (2008) Post-hypoxia-ischemia minocycline treatment attenuates neuroinflammation and white matter injury in the neonatal rat; a comparison of two different dose regimens. Int J Dev Neurosci 26:477–485

    Article  CAS  Google Scholar 

  44. Reinebrant HE, Wixey JA, Buller KM (2013) Neonatal hypoxia-ischaemia disrupts descending neural inputs to dorsal raphe nuclei. Neuroscience 248:427–435. https://doi.org/10.1016/j.neuroscience.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  45. Kobe F, Guseva D, Jensen TP, Wirth A, Renner U, Hess D, Muller M, Medrihan L, Zhang W, Zhang M, Braun K, Westerholz S, Herzog A, Radyushkin K, El-Kordi A, Ehrenreich H, Richter DW, Rusakov DA, Ponimaskin E (2012) 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J Neurosci 32(9):2915–2930. https://doi.org/10.1523/JNEUROSCI.2765-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Russo A, Pellitteri R, Monaco S, Romeo R, Stanzani S (2005) “In vitro” postnatal expression of 5-HT7 receptors in the rat hypothalamus: an immunohistochemical analysis. Brain Res Dev Brain Res 154(2):211–216. https://doi.org/10.1016/j.devbrainres.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  47. Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, da Silva EA, Chugani HT (1997) Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 42(4):666–669. https://doi.org/10.1002/ana.410420420

    Article  CAS  PubMed  Google Scholar 

  48. Costa L, Spatuzza M, D’Antoni S, Bonaccorso CM, Trovato C, Musumeci SA, Leopoldo M, Lacivita E, Catania MV, Ciranna L (2012) Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome. Biol Psychiatry 72(11):924–933. https://doi.org/10.1016/j.biopsych.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  49. Guthrie CR, Murray AT, Franklin AA, Hamblin MW (2005) Differential agonist-mediated internalization of the human 5-hydroxytryptamine 7 receptor isoforms. J Pharmacol Exp Ther 313(3):1003–1010. https://doi.org/10.1124/jpet.104.081919

    Article  CAS  PubMed  Google Scholar 

  50. Dixon RM, Mellor JR, Hanley JG (2009) PICK1-mediated glutamate receptor subunit 2 (GluR2) trafficking contributes to cell death in oxygen/glucose-deprived hippocampal neurons. J Biol Chem 284(21):14230–14235. https://doi.org/10.1074/jbc.M901203200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sato M, Jiao Q, Honda T, Kurotani R, Toyota E, Okumura S, Takeya T, Minamisawa S, Lanier SM, Ishikawa Y (2009) Activator of G protein signaling 8 (AGS8) is required for hypoxia-induced apoptosis of cardiomyocytes: role of G betagamma and connexin 43 (CX43). J Biol Chem 284(45):31431–31440. https://doi.org/10.1074/jbc.M109.014068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Martelaere K, Lintermans B, Haegeman G, Vanhoenacker P (2007) Novel interaction between the human 5-HT7 receptor isoforms and PLAC-24/eIF3k. Cell Signal 19(2):278–288. https://doi.org/10.1016/j.cellsig.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  53. Smith C, Rahman T, Toohey N, Mazurkiewicz J, Herrick-Davis K, Teitler M (2006) Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol Pharmacol 70(4):1264–1270. https://doi.org/10.1124/mol.106.024612

    Article  CAS  PubMed  Google Scholar 

  54. Buller KM, Wixey JA, Reinebrant HE (2012) Disruption of the serotonergic system after neonatal hypoxia-ischemia in a rodent model. Neurol Res Int. https://doi.org/10.1155/2012/650382

    Article  PubMed  PubMed Central  Google Scholar 

  55. Buller KM, Carty ML, Reinebrant HE, Wixey JA (2009) Minocycline: a neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 87(3):599–608. https://doi.org/10.1002/jnr.21890

    Article  CAS  PubMed  Google Scholar 

  56. Carty ML, Wixey JA, Reinebrant HE, Gobe G, Colditz PB, Buller KM (2011) Ibuprofen inhibits neuroinflammation and attenuates white matter damage following hypoxia–ischemia in the immature rodent brain. Brain Res 1402:9–19. https://doi.org/10.1016/j.brainres.2011.06.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Royal Brisbane and Women’s Foundation. JAW was supported by an Australian Postgraduate Award. HER was supported by a University of Queensland Research Tuition Award and University of Queensland Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Wixey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wixey, J.A., Reinebrant, H.E., Chand, K.K. et al. Disruption to the 5-HT7 Receptor Following Hypoxia–Ischemia in the Immature Rodent Brain. Neurochem Res 43, 711–720 (2018). https://doi.org/10.1007/s11064-018-2473-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2473-3

Keywords

Navigation