Advertisement

Neurochemical Research

, Volume 44, Issue 4, pp 776–786 | Cite as

Juvenile Rats Show Altered Gut Microbiota After Exposure to Isoflurane as Neonates

  • Likuan WangEmail author
  • Xudong Yang
  • Haiyin Wu
Original Paper

Abstract

Inhaled anesthetic agents may be neurotoxic to the developing brain of a neonatal rodent. Isoflurane is a commonly used volatile anesthetic agent for maintenance of general anesthesia in various types of surgery. Neonatal exposure to isoflurane has been implicated in long-term neurocognitive dysfunction in children. The mechanisms of isoflurane-induced neurotoxicity have not been fully elucidated. Disruption of gut microbiota is currently attracting considerable interest as a vital pathogeny of some neurologic disorders. In the rat model, it is unknown whether neonatal exposure to isoflurane impacts the gut microbiota composition of juvenile animals. In the present study, postnatal 7-day-old male rats were exposed to 1 minimum alveolar concentration isoflurane for 4 h. Non-anesthetized rats served as controls. The fecal microbiomes of rats were observed using 16S RNA sequencing technique on postnatal day 42. Results indicated that composition of gut microbiota of isoflurane-exposed rats was different from controls. Several bacteria taxa in isoflurane-exposed rats were different from those of controls at various taxonomic levels. In particular, the abundance of Firmicutes, Proteobacteria, Clostridia, Clostridiales, and Lachnospiraceae were significantly increased in exposed rats and the abundance of Bacteroidetes, Actinobacteria, Bacteroidia and Bacteroidaceae were significantly decreased compared to controls. These results may offer new insights into the pathogenesis of isoflurane-induced neurotoxicity.

Keywords

Isoflurane Anesthetic neurotoxicity Gut–brain axis Gut microbiota 

Notes

Acknowledgements

This study was supported by the Science Foundation for Youth Scholars of Peking University School and Hospital of Stomatology (No. PKUSS20160109). The authors thank Dr. Liu Miao for her kind technical assistance with this project. We also thank Nissi S. Wang, M.Sc., for reviewing and editing of the manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors has a conflict of interest to declare.

Supplementary material

11064_2018_2707_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 KB)

References

  1. 1.
    Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23(3):876–882Google Scholar
  2. 2.
    Liu J, Zhao Y, Yang J, Zhang X, Zhang W, Wang P (2017) Neonatal repeated exposure to isoflurane not sevoflurane in mice reversibly impaired spatial cognition at juvenile-age. Neurochem Res 42(2):595–605.  https://doi.org/10.1007/s11064-016-2114-7 Google Scholar
  3. 3.
    Stratmann G, Lee J, Sall JW, Lee BH, Alvi RS, Shih J, Rowe AM, Ramage TM, Chang FL, Alexander TG, Lempert DK, Lin N, Siu KH, Elphick SA, Wong A, Schnair CI, Vu AF, Chan JT, Zai H, Wong MK, Anthony AM, Barbour KC, Ben-Tzur D, Kazarian NE, Lee JY, Shen JR, Liu E, Behniwal GS, Lammers CR, Quinones Z, Aggarwal A, Cedars E, Yonelinas AP, Ghetti S (2014) Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology 39(10):2275–2287.  https://doi.org/10.1038/npp.2014.134 Google Scholar
  4. 4.
    Smith PA (2015) The tantalizing links between gut microbes and the brain. Nature 526(7573):312–314.  https://doi.org/10.1038/526312a Google Scholar
  5. 5.
    Martin CR, Osadchiy V, Kalani A, Mayer EA (2018) The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 6(2):133–148.  https://doi.org/10.1016/j.jcmgh.2018.04.003 Google Scholar
  6. 6.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977.  https://doi.org/10.1038/nn.4030 Google Scholar
  7. 7.
    Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335.  https://doi.org/10.1038/nri3430 Google Scholar
  8. 8.
    Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33.  https://doi.org/10.1016/j.ynstr.2016.03.001 Google Scholar
  9. 9.
    Endres K, Schafer KH (2018) Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J Innate Immun 10(3):172–180.  https://doi.org/10.1159/000488629 Google Scholar
  10. 10.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463.  https://doi.org/10.1016/j.cell.2013.11.024 Google Scholar
  11. 11.
    Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M, Hartmann T, Schwiertz A, Endres K (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56(2):775–788.  https://doi.org/10.3233/JAD-160926 Google Scholar
  12. 12.
    Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, Musch MW, Liao F, Ward JF, Holtzman DM, Chang EB, Tanzi RE, Sisodia SS (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028.  https://doi.org/10.1038/srep30028 Google Scholar
  13. 13.
    Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81(3):369–382.  https://doi.org/10.1002/ana.24901 Google Scholar
  14. 14.
    Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, Gentile S, Belotti G, Villani D, Harach T, Bolmont T, Padovani A, Boccardi M, Frisoni GB, Group I-F (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68.  https://doi.org/10.1016/j.neurobiolaging.2016.08.019 Google Scholar
  15. 15.
    Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, Lu Y, Cai M, Zhu C, Tan YL, Zheng P, Li HY, Zhu J, Zhou HD, Bu XL, Wang YJ (2018) Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 63(4):1337–1346.  https://doi.org/10.3233/JAD-180176 Google Scholar
  16. 16.
    Seubert CN, Zhu W, Pavlinec C, Gravenstein N, Martynyuk AE (2013) Developmental effects of neonatal isoflurane and sevoflurane exposure in rats. Anesthesiology 119(2):358–364.  https://doi.org/10.1097/ALN.0b013e318291c04e Google Scholar
  17. 17.
    Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, Visrodia KH, Alvi RS, Ku B, Lee MT, Dai R (2009) Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 110(4):834–848.  https://doi.org/10.1097/ALN.0b013e31819c463d Google Scholar
  18. 18.
    Lee BH, Chan JT, Kraeva E, Peterson K, Sall JW (2014) Isoflurane exposure in newborn rats induces long-term cognitive dysfunction in males but not females. Neuropharmacology 83:9–17.  https://doi.org/10.1016/j.neuropharm.2014.03.011 Google Scholar
  19. 19.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60.  https://doi.org/10.1186/gb-2011-12-6-r60 Google Scholar
  20. 20.
    Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(6):852.  https://doi.org/10.1016/j.chom.2015.05.012 Google Scholar
  21. 21.
    Torow N, Hornef MW (2017) The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol 198(2):557–563.  https://doi.org/10.4049/jimmunol.1601253 Google Scholar
  22. 22.
    Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA (2017) Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr 106(1):87–94.  https://doi.org/10.1111/apa.13613 Google Scholar
  23. 23.
    Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173.  https://doi.org/10.1016/j.bbi.2015.04.004 Google Scholar
  24. 24.
    Frohlich EE, Farzi A, Mayerhofer R, Reichmann F, Jacan A, Wagner B, Zinser E, Bordag N, Magnes C, Frohlich E, Kashofer K, Gorkiewicz G, Holzer P (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155.  https://doi.org/10.1016/j.bbi.2016.02.020 Google Scholar
  25. 25.
    Batai I, Kerenyi M, Tekeres M (1999) The impact of drugs used in anaesthesia on bacteria. Eur J Anaesthesiol 16(7):425–440Google Scholar
  26. 26.
    Molliex S, Montravers P, Dureuil B, Desmonts JM (1998) Halogenated anesthetics inhibit Pseudomonas aeruginosa growth in culture conditions reproducing the alveolar environment. Anesth Analg 86(5):1075–1078Google Scholar
  27. 27.
    Rueda-Martinez JL, Geronimo-Pardo M, Martinez-Monsalve A, Martinez-Serrano M (2014) Topical sevoflurane and healing of a post-operative surgical site superinfected by multi-drug-resistant Pseudomonas aeruginosa and susceptible Staphylococcus aureus in an immunocompromised patient. Surg Infect (Larchmt) 15(6):843–846.  https://doi.org/10.1089/sur.2013.079 Google Scholar
  28. 28.
    Martinez-Serrano M, Geronimo-Pardo M, Martinez-Monsalve A, Crespo-Sanchez MD (2017) Antibacterial effect of sevoflurane and isoflurane. Rev Esp Quimioter 30(2):84–89Google Scholar
  29. 29.
    Schoster A, Mosing M, Jalali M, Staempfli HR, Weese JS (2016) Effects of transport, fasting and anaesthesia on the faecal microbiota of healthy adult horses. Equine Vet J 48(5):595–602.  https://doi.org/10.1111/evj.12479 Google Scholar
  30. 30.
    Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533.  https://doi.org/10.1289/ehp.00108s3511 Google Scholar
  31. 31.
    Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110(4):796–804.  https://doi.org/10.1097/01.anes.0000344728.34332.5d Google Scholar
  32. 32.
    Warner DO, Zaccariello MJ, Katusic SK, Schroeder DR, Hanson AC, Schulte PJ, Buenvenida SL, Gleich SJ, Wilder RT, Sprung J, Hu D, Voigt RG, Paule MG, Chelonis JJ, Flick RP (2018) Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo anesthesia safety in kids (MASK) study. Anesthesiology 129(1):89–105.  https://doi.org/10.1097/ALN.0000000000002232 Google Scholar
  33. 33.
    Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA (2018) Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 44:34–40.  https://doi.org/10.1016/j.mib.2018.07.003 Google Scholar
  34. 34.
    Falony G, Vieira-Silva S, Raes J (2018) Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat Microbiol 3(5):526–528.  https://doi.org/10.1038/s41564-018-0143-5 Google Scholar
  35. 35.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638.  https://doi.org/10.1126/science.1110591 Google Scholar
  36. 36.
    Nguyen MT, Gotz F (2016) Lipoproteins of gram-positive bacteria: key players in the immune response and virulence. Microbiol Mol Biol Rev 80(3):891–903.  https://doi.org/10.1128/MMBR.00028-16 Google Scholar
  37. 37.
    Patterson E, RM OD, Murphy EF, Wall R, O OS, Nilaweera K, Fitzgerald GF, Cotter PD, Ross RP, Stanton C (2014) Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr 111(11):1905–1917.  https://doi.org/10.1017/S0007114514000117 Google Scholar
  38. 38.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075.  https://doi.org/10.1073/pnas.0504978102 Google Scholar
  39. 39.
    Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(5):e426–e437.  https://doi.org/10.1111/j.1467-789X.2010.00825.x Google Scholar
  40. 40.
    Francis HM, Stevenson RJ (2011) Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci 125(6):943–955.  https://doi.org/10.1037/a0025998 Google Scholar
  41. 41.
    Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, Fu X, Zhou R, Xu YF, Huang L, Zhu H, Han Y, Qin C (2017) Altered Gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis 60(4):1241–1257.  https://doi.org/10.3233/JAD-170020 Google Scholar
  42. 42.
    de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206.  https://doi.org/10.1016/j.bbi.2013.12.005 Google Scholar
  43. 43.
    Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A, Jabado O, Hirschberg DL, Lipkin WI (2011) Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE 6(9):e24585.  https://doi.org/10.1371/journal.pone.0024585 Google Scholar
  44. 44.
    Popoff MR, Bouvet P (2009) Clostridial toxins. Future Microbiol 4(8):1021–1064.  https://doi.org/10.2217/fmb.09.72 Google Scholar
  45. 45.
    Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118(3):502–515.  https://doi.org/10.1097/ALN.0b013e3182834d77 Google Scholar
  46. 46.
    Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197Google Scholar
  47. 47.
    Broad KD, Hassell J, Fleiss B, Kawano G, Ezzati M, Rocha-Ferreira E, Hristova M, Bennett K, Fierens I, Burnett R, Chaban B, Alonso-Alconada D, Oliver-Taylor A, Tachsidis I, Rostami J, Gressens P, Sanders RD, Robertson NJ (2016) Isoflurane exposure induces cell death, microglial activation and modifies the expression of genes supporting neurodevelopment and cognitive function in the male newborn piglet brain. PLoS ONE 11(11):e0166784.  https://doi.org/10.1371/journal.pone.0166784 Google Scholar
  48. 48.
    Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, Lungkaphin A, Pongchaidecha A, Sirilun S, Chaiyasut C, Pratchayasakul W, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15(1):11.  https://doi.org/10.1186/s12974-018-1055-2 Google Scholar
  49. 49.
    Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I (2012) Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9:151.  https://doi.org/10.1186/1742-2094-9-151 Google Scholar
  50. 50.
    Borenstein AR, Copenhaver CI, Mortimer JA (2006) Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord 20(1):63–72.  https://doi.org/10.1097/01.wad.0000201854.62116.d7 Google Scholar
  51. 51.
    Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10):768–774.  https://doi.org/10.1212/WNL.0b013e3181b6bb95 Google Scholar
  52. 52.
    Whitaker EE, Christofi FL, Quinn KM, Wiemann BZ, Xia JC, Tobias JD, Bissonnette B (2017) Selective induction of IL-1beta after a brief isoflurane anesthetic in children undergoing MRI examination. J Anesth 31(2):219–224.  https://doi.org/10.1007/s00540-016-2294-y Google Scholar
  53. 53.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141.  https://doi.org/10.1016/j.cell.2014.03.011 Google Scholar
  54. 54.
    Huttenhower C, Kostic AD, Xavier RJ (2014) Inflammatory bowel disease as a model for translating the microbiome. Immunity 40(6):843–854.  https://doi.org/10.1016/j.immuni.2014.05.013 Google Scholar
  55. 55.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Meta HITC, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546.  https://doi.org/10.1038/nature12506 Google Scholar
  56. 56.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439.  https://doi.org/10.1126/science.1237439 Google Scholar
  57. 57.
    Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5(5):e10667.  https://doi.org/10.1371/journal.pone.0010667 Google Scholar
  58. 58.
    An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156(1–2):123–133.  https://doi.org/10.1016/j.cell.2013.11.042 Google Scholar
  59. 59.
    Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, A DL, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8(343):343ra382.  https://doi.org/10.1126/scitranslmed.aad7121 Google Scholar
  60. 60.
    Lukanc B, Butinar J, Svete A, Prošek M, Seliškar A, Lukanc B, Butinar J, Svete A, Prošek M, Seliškar A (2017) (2017) The influence of isoflurane anesthesia on intestinal permeability in healthy dogs. Slov Vet Res 54(3):60 117–123.Google Scholar
  61. 61.
    Galland L (2014) The gut microbiome and the brain. J Med Food 17(12):1261–1272.  https://doi.org/10.1089/jmf.2014.7000 Google Scholar
  62. 62.
    Murphy KL, Baxter MG (2013) Long-term effects of neonatal single or multiple isoflurane exposures on spatial memory in rats. Front Neurol 4:87.  https://doi.org/10.3389/fneur.2013.00087 Google Scholar
  63. 63.
    Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115(5):979–991.  https://doi.org/10.1097/ALN.0b013e318234228b Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyPeking University School and Hospital of StomatologyBeijingChina

Personalised recommendations