Skip to main content

Advertisement

Log in

Zinc Transporter Proteins

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Zinc, which is involved in the structure of all enzyme classes, is a micro nutrient element and necessary for growth and development. The ability of zinc to function without causing toxic effects is depends on the protection of its homeostasis. Zinc transporter proteins are responsible for keeping zinc at certain concentrations. Based on their predicted membrane topology, Zn transporters are divided into two major families, SLC39s/ZIPs and SLC30s/ZnTs, which transport Zn in opposite directions through cellular and intracellular membranes. ZIPs increases the zinc concentration in the cytosol. For this, the ZIPs carries the zinc from extracellular and intracellular compartments to the cytosol. ZnTs, reduces the concentration of zinc in the cytosol. For this, ZnTs carries the zinc from the cytosol to extracellular and intracellular compartments. After being transported to the cell, 50% of the zinc is found in the cytoplasm, 30–40% in the nucleus, and 10% in the plasma and organelle membranes. The expression of many zinc transporter proteins in the cell is depending on the concentration of zinc and the physiological problems. The aim of this study is to give information about association of zinc transporter proteins with physiological events and health problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hojyo S, Fukada T (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch Biochem Biophys 5:1–8

    Google Scholar 

  2. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67:283–301

    CAS  PubMed  Google Scholar 

  3. Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17:336

    PubMed  PubMed Central  Google Scholar 

  4. Wang X, Wu Y, Zhou B (2009) Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J 23:2650–2661

    CAS  PubMed  Google Scholar 

  5. Qin Y, Thomas D, Fontaine CP, Colvin RA (2009) Silencing of ZnT1 reduces Zn2+ efflux in cultured cortical neurons. Neurosci Lett 450:206–210

    CAS  PubMed  Google Scholar 

  6. Andrews GK, Wang H, Dey SK, Palmiter RD (2004) Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis 40:74–81

    CAS  PubMed  Google Scholar 

  7. Chaigne-Delalande B, Lenardo MJ (2014) Divalent cation signaling in immune cells. Trends Immunol 35:332–344

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmiter RD, Cole TB, D. FS (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Iguchi K, Usui S, Inoue T, Sugimura Y, Tatematsu M, Hirano K (2002) High-level expression of zinc transporter-2 in the rat lateral and dorsal prostate. J Androl 23:819–824

    CAS  PubMed  Google Scholar 

  10. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    CAS  PubMed  Google Scholar 

  11. McAllister BB, Dyck RH (2017) Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 80:329–350

    CAS  PubMed  Google Scholar 

  12. Palmiter RD, Cole TB, QUAIFE CJ DFS (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14935–14939

    Google Scholar 

  13. Wang X, Zhou B (2010) Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life 62:176–182

    CAS  PubMed  Google Scholar 

  14. Wang ZY, Stoltenberg M, Huang L, Danscher G, Dahlstrom A, Shi Y, Li JY (2005) Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res Bull 64:441–448

    CAS  PubMed  Google Scholar 

  15. McCormick NH, Kelleher SL (2012) ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol 303:C291–C297

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McCormick NH, Lee S, Hennigar SR, Kelleher SL (2016) ZnT4 (SLC30A4)-null (“lethal milk”) mice have defects in mammary gland secretion and hallmarks of precocious involution during lactation. Am J Physiol Regul Integr Comp Physiol 310:R33–R40

    PubMed  Google Scholar 

  17. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055

    CAS  PubMed  Google Scholar 

  18. Suzuki T, Ishihara K, Migaki H, Matsuura W, Kohda A, Okumura K, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J Biol Chem 280:637–643

    CAS  PubMed  Google Scholar 

  19. Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277:26389–26395

    CAS  PubMed  Google Scholar 

  20. Zhang LH, Wang X, Zheng ZH, Ren H, Stoltenberg M, Danscher G, Huang L, Rong M, Wang ZY (2010) Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol Aging 31:74–87

    PubMed  Google Scholar 

  21. Huang L, Yu YY, Kirschke CP, Gertz ER, Lloyd KK (2007) Znt7 (Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J Biol Chem 282:37053–37063

    CAS  PubMed  Google Scholar 

  22. Huang L, Kirschke CP, Lay YA, Levy LB, Lamirande DE, Zhang PH (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 287:33883–33896

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chimienti F, Favier A, Seve M (2005) ZnT-8, a pancreatic beta-cell-specific zinc transporter. Biometals 18:313–317

    CAS  PubMed  Google Scholar 

  24. Alexander SPH, Mathie A, Peters JA (2011) SLC30 zinc transporter family. Br J Pharm 164:263–264

    Google Scholar 

  25. Kelleher SL, Velasquez V, Croxford TP, McCormick NH, Lopez V, MacDavid J (2012) Mapping the zinc-transporting system in mammary cells: molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation. J Cell Physiol 227:1761–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters—a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 34:548–560

    CAS  PubMed  Google Scholar 

  27. Perez Y, Shorer Z, Liani-Leibson K, Chabosseau P, Kadir R, Volodarsky M, Halperin D, Barber-Zucker S, Shalev H, Schreiber R, Gradstein L, Gurevich E, Zarivach R, Rutter GA, Landau D, Birk OS (2017) SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140:928–939

    PubMed  PubMed Central  Google Scholar 

  28. Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS ONE 7:e33211

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Olesen RH, Hyde TM, Kleinman JE, Smidt K, Rungby J, Larsen A (2016) Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain. Transl Psychiatry 6:e838

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Itsumura N, Inamo Y, Okazaki F, Teranishi F, Narita H, Kambe T, Kodama H (2013) Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS ONE 8:e64045

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Martel G, Hevi C, Kane-Goldsmith N, Shumyatsky GP (2011) Zinc transporter ZnT3 is involved in memory dependent on the hippocampus and perirhinal cortex. Behav Brain Res 223:233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaneko M, Noguchi T, Ikegami S, Sakurai T, Kakita A, Toyoshima Y, Kambe T, Yamada M, Inden M, Hara H, Oyanagi K, Inuzuka T, Takahashi H, Hozumi I (2015) Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis. J Neurosci Res 93:370–379

    CAS  PubMed  Google Scholar 

  34. Inoue K, Matsuda K, Itoh M, Kawaguchi H, Tomoike H, Aoyagi T, Nagai R, Hori M, Nakamura Y, Tanaka T (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 11:1775–1784

    CAS  PubMed  Google Scholar 

  35. Nishida K, Hasegawa A, Nakae S, Oboki K, Saito H, Yamasaki S, Hirano T (2009) Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med 206:1351–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lovell MA, Smith JL, Markesbery WR (2006) Elevated zinc transporter-6 in mild cognitive impairment, alzheimer disease, and pick disease. J Neuropathol Exp Neurol 65:489–498

    CAS  PubMed  Google Scholar 

  37. Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA, Gilon P, in’t Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877

    CAS  PubMed  Google Scholar 

  38. Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Noh H, Paik HY, Kim J, Chung J (2014) The alteration of zinc transporter gene expression is associated with inflammatory markers in obese women. Biol Trace Elem Res 158:1–8

    CAS  PubMed  Google Scholar 

  40. Bosomworth HJ, Adlard PA, Ford D, Valentine RA (2013) Altered expression of ZnT10 in alzheimer’s disease brain. PLoS ONE 8:65475–65481

    Google Scholar 

  41. Syring KE, Boortz KA, Oeser JK, Ustione A, Platt KA, Shadoan MK, McGuinness OP, Piston DW, Powell DR, O’Brien RM (2016) Combined deletion of Slc30a7 and Slc30a8 unmasks a critical role for ZnT8 in glucose-stimulated insulin secretion. Endocrinology 157:4534–4541

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA (2016) Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 163:77–87

    PubMed  Google Scholar 

  43. Beharier O, Dror S, Levy S, Kahn J, Mor M, Etzion S, Gitler D, Katz A, Muslin AJ, Moran A, Etzion Y (2012) ZnT-1 protects HL-1 cells from simulated ischemia-reperfusion through activation of Ras-ERK signaling. J Mol Med 90:127–138

    CAS  PubMed  Google Scholar 

  44. Mor M, Beharier O, Levy S, Kahn J, Dror S, Blumenthal D, Gheber LA, Peretz A, Katz A, Moran A, Etzion Y (2012) ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling. Am J Physiol Cell Physiol 303:C192–C203

    CAS  PubMed  Google Scholar 

  45. Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci USA 101:4918–4923

    CAS  PubMed  Google Scholar 

  46. Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17:6678–6684

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Falcon-Perez JM, Dell’Angelica EC (2007) Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp Cell Res 313:1473–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chowanadisai W, Lonnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707

    CAS  PubMed  Google Scholar 

  49. Perez-Becerril C, Morris AG, Mortimer A, McKenna PJ, de Belleroche J (2016) Common variants in the chromosome 2p23 region containing the SLC30A3 (ZnT3) gene are associated with schizophrenia in female but not male individuals in a large collection of European samples. Psychiatry Res 246:335–340

    CAS  PubMed  Google Scholar 

  50. Kurita H, Okuda R, Yokoo K, Inden M, Hozumi I (2016) Protective roles of SLC30A3 against endoplasmic reticulum stress via ERK1/2 activation. Biochem Biophys Res Commun 479:853–859

    CAS  PubMed  Google Scholar 

  51. Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108:3366–3370

    CAS  PubMed  Google Scholar 

  52. Smidt K, Larsen A, Bronden A, Sorensen KS, Nielsen JV, Praetorius J, Martensen PM, Rungby J (2016) The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression. Biometals 29:287–298

    CAS  PubMed  Google Scholar 

  53. Murgia C, Vespignani I, Rami R, Perozzi G (2006) The ZnT4 mutation in lethal milk mice effects intestinal zinc homeostasis through the expression of other Zn transporters. Genes Nutrition 1:61–70

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang X, Liang D, Guo B, Deng W, Chi ZH, Cai Y, Wang L, Ma J (2013) Zinc transporter 5 and zinc transporter 7 induced by high glucose protects peritoneal mesothelial cells from undergoing apoptosis. Cell Signal 25:999–1010

    CAS  PubMed  Google Scholar 

  55. Liang D, Xiang L, Yang M, Zhang X, Guo B, Chen Y, Yang L, Cao J (2013) ZnT7 can protect MC3T3–E1 cells from oxidative stress-induced apoptosis via PI3K/Akt and MAPK/ERK signaling pathways. Cell Signal 25:1126–1135

    CAS  PubMed  Google Scholar 

  56. Fukunaka A, Kurokawa Y, Teranishi F, Sekler I, Oda K, Ackland ML, Faundez V, Hiromura M, Masuda S, Nagao M, Enomoto S, Kambe T (2011) Tissue nonspecific alkaline phosphatase is activated via a two-step mechanism by zinc transport complexes in the early secretory pathway. J Biol Chem 286:16363–16373

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A, Shimizu T, Mita T, Kanazawa A, Imaizumi MO, Abe T, Kiyonari H, Hojyo S, Fukada T, Kawauchi T, Nagamatsu S, Hirano T, Kawamori R, Watada H (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pound LD, Sarkar SA, Benninger RK, Wang Y, Suwanichkul A, Shadoan MK, Printz RL, Oeser JK, Lee CE, Piston DW, McGuinness OP, Hutton JC, Powell DR, O’Brien RM (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian J, Xu K, Yoo J, Chen TT, Andrews G, Noebels JL (2011) Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci 31:97–104

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A (2006) Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 38:181–198

    CAS  PubMed  Google Scholar 

  61. Sun P, Wang S, Jiang Y, Tao Y, Tian Y, Zhu K, Wan H, Zhang L, Zhang L (2013) Zip1, Zip2, and Zip8 mRNA expressions were associated with growth hormone level during the growth hormone provocation test in children with short stature. Biol Trace Elem Res 155:11–22

    CAS  PubMed  Google Scholar 

  62. Inoue Y, Hasegawa S, Ban S, Yamada T, Date Y, Mizutani H, Nakata S, Tanaka M, Hirashima N (2014) ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J Biol Chem 289:21451–21462

    PubMed  PubMed Central  Google Scholar 

  63. Wang F, Dufner-Beattie J, Kim BE, Petris MJ, Andrews G, Eide DJ (2004) Zinc-stimulated endocytosis controls activity of the mouse ZIP1 and ZIP3 zinc uptake transporters. J Biol Chem 279:24631–24639

    CAS  PubMed  Google Scholar 

  64. Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK (2006) Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44:239–251

    CAS  PubMed  Google Scholar 

  65. Kelleher SL, Lopez V, Lonnerdal B, Dufner-Beattie J, Andrews GK (2009) Zip3 (Slc39a3) functions in zinc reuptake from the alveolar lumen in lactating mammary gland. Am J Physiol Regul Integr Comp Physiol 297:R194–R201

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmitt S, Kury S, Giraud M, Dreno B, Kharfi M, Bezieau S (2009) An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat 30:926–933

    CAS  PubMed  Google Scholar 

  68. Bin BH, Bhin J, Kim NH, Lee SH, Jung HS, Seo J, Kim DK, Hwang D, Fukada T, Lee AY, Lee TR, Cho EG (2017) An acrodermatitis enteropathica-associated Zn Transporter, ZIP4, regulates human epidermal homeostasis. J Invest Dermatol 137:874–883

    CAS  PubMed  Google Scholar 

  69. Belloni-Olivi L, Marshall C, Laal B, Andrews GK, Bressler J (2009) Localization of zip1 and zip4 mRNA in the adult rat brain. J Neurosci Res 87:3221–3230

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang SM, Cousins RJ, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci USA 104:18636–18641

    CAS  PubMed  Google Scholar 

  71. Cui X, Zhang Y, Yang J, Sun X, Hagan JP, Guha S, Li M (2014) ZIP4 confers resistance to zinc deficiency-induced apoptosis in pancreatic cancer. Cell Cycle 13:1180–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen QG, Zhang Z, Yang Q, Shan GY, Yu XY, Kong CZ (2012) The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol 30:906–911

    CAS  PubMed  Google Scholar 

  73. Wang F, Kim BE, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441

    CAS  PubMed  Google Scholar 

  74. Pocanschi CL, Ehsani S, Mehrabian M, Wille H, Reginold W, Trimble WS, Wang H, Yee A, Arrowsmith CH, Bozoky Z, Kay LE, Forman-Kay JD, Rini JM, Schmitt-Ulms G (2013) The ZIP5 ectodomain co-localizes with PrP and may acquire a PrP-like fold that assembles into a dimer. PLoS ONE 8:e72446

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Geiser J, De Lisle RC, Andrews GK (2013) The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLoS ONE 8:e82149

    PubMed  PubMed Central  Google Scholar 

  76. Chowanadisai W, Lonnerdal B, Kelleher SL (2008) Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res 1199:10–19

    CAS  PubMed  Google Scholar 

  77. Taylor KM, Nicholson RI (2003) The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim et Biophysica Acta (BBA) Biomembranes 1611:16–30

    CAS  Google Scholar 

  78. Zhao L, Chen W, Taylor KM, Cai B, Li X (2007) LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway. Biochem Biophys Res Commun 363:82–88

    CAS  PubMed  Google Scholar 

  79. Ohashi W, Hase K, Fukada T (2016) 672 Zinc transporter SLC39A7/ZIP7 is essential for intestinal homeostatic self-renewal. Gastroenterology 150:S138

    Google Scholar 

  80. Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15:101–111

    CAS  PubMed  Google Scholar 

  81. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 149:4912–4920

    CAS  PubMed  Google Scholar 

  82. Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA 102:3401–3406

    CAS  PubMed  Google Scholar 

  83. Fujishiro H, Okugaki S, Kubota K, Fujiyama T, Miyataka H, Himeno S (2009) The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells. J Appl Toxicol 29:367–373

    CAS  PubMed  Google Scholar 

  84. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–180

    CAS  PubMed  Google Scholar 

  85. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang B, He L, Dong H, Dalton TP, Nebert DW (2011) Generation of a Slc39a8 hypomorph mouse: markedly decreased ZIP8 Zn(2)(+)/(HCO(3)(-))(2) transporter expression. Biochem Biophys Res Commun 410:289–294

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsuura W, Yamazaki T, Yamaguchi-Iwai Y, Masuda S, Nagao M, Andrews GK, Kambe T (2009) SLC39A9 (ZIP9) regulates zinc homeostasis in the secretory pathway: characterization of the ZIP subfamily I protein in vertebrate cells. Biosci Biotechnol Biochem 73:1142–1148

    CAS  PubMed  Google Scholar 

  88. Bulldan A, Dietze R, Shihan M, Scheiner-Bobis G (2016) Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells. Cell Signal 28:1075–1085

    CAS  PubMed  Google Scholar 

  89. Pal D, Sharma U, Singh SK, Prasada R (2014) Association between ZIP10 gene expression and tumor aggressiveness in renal cell carcinoma. Genes 552:195–198

    CAS  Google Scholar 

  90. Yu Y, Wu A, Zhang Z, Yan G, Zhang F, Zhang L, Shen X, Hu R, Zhang Y, Zhang K, Wang F (2013) Characterization of the GufA subfamily member SLC39A11/Zip11 as a zinc transporter. J Nutr Biochem 24:1697–1708

    CAS  PubMed  Google Scholar 

  91. Martin AB, Aydemir TB, Guthrie GJ, Samuelson DA, Chang SM, Cousins RJ (2013) Gastric and colonic zinc transporter ZIP11 (Slc39a11) in mice responds to dietary zinc and exhibits nuclear localization. J Nutr 143:1882–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci USA 110:9903–9908

    CAS  PubMed  Google Scholar 

  93. Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W, Hojyo S, Miyai T, Nishida K, Yokoyama S, Hirano T (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 286:40255–40265

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, Hirano T (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE 6:e18059

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Aydemir TB, Chang SM, Guthrie GJ, Maki AB, Ryu MS, Karabiyik A, Cousins RJ (2012) Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS ONE 7:e48679

    CAS  PubMed  Google Scholar 

  96. Grace PM, Strand KA, Galer EL, Urban DJ, Wang X, Baratta MV, Fabisiak TJ, Anderson ND, Cheng K, Greene LI, Berkelhammer D, Zhang Y, Ellis AL, Yin HH, Campeau S, Rice KC, Roth BL, Maier SF, Watkins LR (2016) Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc Natl Acad Sci USA 113:E3441–E3450

    CAS  PubMed  Google Scholar 

  97. Leung KW, Gvritishvili A, Liu Y, Tombran-Tink J (2012) ZIP2 and ZIP4 mediate age-related zinc fluxes across the retinal pigment epithelium. J Mol Neurosci 46:122–137

    CAS  PubMed  Google Scholar 

  98. Lin Y, Chen Y, Wang Y, Yang J, Zhu VF, Liu Y, Cui X, Chen L, Yan W, Jiang T, Hergenroeder GW, Fletcher SA, Levine JM, Kim DH, Tandon N, Zhu JJ, Li M (2013) ZIP4 is a novel molecular marker for glioma. Neuro Oncol 15:1008–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lue HW, Yang X, Wang R, Qian W, Xu RZ, Lyles R, Osunkoya AO, Zhou BP, Vessella RL, Zayzafoon M, Liu ZR, Zhau HE, Chung LW (2011) LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS ONE 6:e27720

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Myers SA, Nield A, Chew GS, Myers MA (2013) The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. PLoS ONE 8:e79316

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin W, Vann DR, Doulias PT, Wang T, Landesberg G, Li X, Ricciotti E, Scalia R, He M, Hand NJ, Rader DJ (2017) Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Invest 127:2407–2417

    PubMed  PubMed Central  Google Scholar 

  102. Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Ryu JH, Chun CH, Chun JS (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156:730–743

    CAS  PubMed  Google Scholar 

  103. Kagara N, Tanaka N, Noguchi S, Hirano T (2007) Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci 98:692–697

    CAS  PubMed  Google Scholar 

  104. Wu L, Chaffee KG, Parker AS, Sicotte H, Petersen GM (2015) Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer. Tumour Biol 36:7431–7437

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Idaira Y, Munemasa T, Fukada T, Shimoda S, Asada Y (2016) Role of zinc transporter ZIP13 in degenerative changes in periodontal ligament and alveolar bone. J Hard Tissue Biol 25:49–55

    CAS  Google Scholar 

  106. Giunta C, Elcioglu NH, Albrecht B, Eich G, Chambaz C, Janecke AR, Yeowell H, Weis M, Eyre DR, Kraenzlin M, Steinmann B (2008) Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82:1290–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, Hojyo S, Nakayama M, Ohara O, Koseki H, Dos Santos HG, Bonafe L, Ha-Vinh R, Zankl A, Unger S, Kraenzlin ME, Beckmann JS, Saito I, Rivolta C, Ikegawa S, Superti-Furga A, Hirano T (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS ONE 3:e3642

    PubMed  PubMed Central  Google Scholar 

  108. Thambiayya K, Kaynar AM, St. Croix CM, Pitt BR (2012) Functional role of intracellular labile zinc in pulmonary endothelium. Pulm Circ 2:443–451

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu K, Wang L, Shi L, Hu X, Li C, Zhang L (2016) Down-regulation of ZIP2 and ZIP8 expression in peripheral blood mononuclear cells from hepatitis B patients and hepatitis C patients. Int J Clin Exp Med 9:6078–6085

    CAS  Google Scholar 

  110. Tao YT, Huang Q, Jiang YL, Wang XL, Sun P, Tian Y, Wu HL, Zhang M, Meng SB, Wang YS, Sun Q, Zhang LY (2013) Up-regulation of Slc39A2(Zip2) mRNA in peripheral blood mononuclear cells from patients with pulmonary tuberculosis. Mol Biol Rep 40:4979–4984

    CAS  PubMed  Google Scholar 

  111. Xu TF, Wang XL, Yang JZ, Hu XY, Wu WF, Guo L, Kang LD, Zhang LY (2009) Overexpression of Zip-2 mRNA in the leukocytes of asthmatic infants. Pediatr Pulm 44:763–767

    Google Scholar 

  112. Perry J, Kleckner N, Börner GV (2005) Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc Natl Acad Sci USA 102:17594–17599

    CAS  PubMed  Google Scholar 

  113. Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M, Kamoun R, Moisan JP (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240

    PubMed  Google Scholar 

  114. Wang F, Kim BE, Dufner-Beattie J, Petris MJ, Andrews G, Eide DJ (2004) Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. Hum Mol Genet 13:563–571

    CAS  PubMed  Google Scholar 

  115. Kang X, Chen R, Zhang J, Li G, Dai P-G, Chen C, Wang H-J (2015) Expression profile analysis of zinc transporters (ZIP4, ZIP9, ZIP11, ZnT9) in gliomas and their correlation with IDH1 mutation status. Asian Pac J Cancer Prev 16:3355–3360

    PubMed  Google Scholar 

  116. Weaver BP, Andrews GK (2012) Regulation of zinc-responsive Slc39a5 (Zip5) translation is mediated by conserved elements in the 3′-untranslated region. Biometals 25:319–335

    CAS  PubMed  Google Scholar 

  117. Taylor K, Morgan H (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13:1

    Google Scholar 

  118. Wong CP, Magnusson KR, Ho E (2013) Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. J Nutr Biochem 24:353–359

    CAS  PubMed  Google Scholar 

  119. Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463

    CAS  PubMed  Google Scholar 

  120. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5:ra11

    PubMed  PubMed Central  Google Scholar 

  121. Zhang R, Witkowska K, Afonso Guerra-Assuncao J, Ren M, Ng FL, Mauro C, Tucker AT, Caulfield MJ, Ye S (2016) A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum Mol Genet 25:4117–4126

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ryu MS, Lichten LA, Liuzzi JP, Cousins RJ (2008) Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J Nutr 138:2076–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Taniguchi M, Fukunaka A, Hagihara M, Watanabe K, Kamino S, Kambe T, Enomoto S, Hiromura M (2013) Essential role of the zinc transporter ZIP9/SLC39A9 in regulating the activations of Akt and Erk in B-cell receptor signaling pathway in DT40 cells. PLoS ONE 8:e58022

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Thomas P, Pang Y, Dong J (2017) Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling. Mol Cell Endocrinol 447:23–34

    CAS  PubMed  Google Scholar 

  125. Taylor KM, Muraina IA, Brethour D, Schmitt-Ulms G, Nimmanon T, Ziliotto S, Kille P, Hogstrand C (2016) Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem J 473:2531–2544

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hojyo S, Miyai T, Fujishiro H, Kawamura M, Yasuda T, Hijikata A, Bin B, Irié T, Tanaka J, Atsumi T, Murakami M, Nakayama M, Ohara O, Himeno S, Yoshida H, Koseki H, Ikawa T, Mishima K, Fukada T (2014) Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc Natl Acad Sci USA 111:11786–11791

    CAS  PubMed  Google Scholar 

  127. Chowanadisai W (2014) Comparative genomic analysis of slc39a12/ZIP12: insight into a zinc transporter required for vertebrate nervous system development. PLoS One 9:e111535

    PubMed  PubMed Central  Google Scholar 

  128. Bin BH, Hojyo S, Ryong Lee T, Fukada T (2014) Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13. Rare Dis 2:e974982

    PubMed  PubMed Central  Google Scholar 

  129. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 102:6843–6848

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkerim Kasim Baltaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltaci, A.K., Yuce, K. Zinc Transporter Proteins. Neurochem Res 43, 517–530 (2018). https://doi.org/10.1007/s11064-017-2454-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2454-y

Keywords

Navigation