Skip to main content

Advertisement

Log in

Excessive Activation of NMDA Receptors Induced Neurodevelopmental Brain Damage and Cognitive Deficits in Rats Exposed to Intrauterine Hypoxia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Intrauterine hypoxia is one of the most common stressors in fetuses, which can lead to abnormal brain development and permanent neurological deficits in adulthood. Neurological disorder excitotoxicity induced by hypoxia or ischemia may involve N-methyl-d-aspartate receptors (NMDARs), which are known to participate in the maturation and plasticity of developmental neurons. Inhibition of NMDARs has been reported to improve neurological outcomes in traumatic brain injuries and Alzheimer’s disease. Here, we investigated if antenatal blockade of NMDARs induced by memantine could alleviate neurodevelopmental brain damage and long-term cognitive deficits in intrauterine hypoxia rats. Pregnant rats were assigned to four groups: air control, air + memantine, hypoxia, and hypoxia + memantine. The rats were exposed to hypoxic conditions (FiO2 = 0.095–0.115) for 8 h/day (hypoxia group) or given a daily memantine injection (5 mg/kg, i.p.) before hypoxia exposure from pregnant day 19 (G19) to G20 (hypoxia + memantine group).The influence of NMDARs antenatal blockade by memantine on intrauterine hypoxia-induced brain developmental damage and cognitive function was then studied. Intrauterine hypoxia resulted in decreased fetal body weight, brain weight, cognitive function, hippocampal neuron numbers, and Ki-67 proliferation index in the hippocampus. Memantine preventive treatment in pregnant rats before hypoxia exposure alleviated the aforementioned damage in vivo. Excessive activation of NMDARs contributes to fetal brain developmental damage and cognitive ability impairment induced by intrauterine hypoxia, which could be alleviated by antenatal memantine preventative treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller SL, Huppi PS, Mallard C (2015) The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 594(4):807

    Google Scholar 

  2. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50(5):553–562

    CAS  PubMed  Google Scholar 

  3. Mach M, Dubovický M, Navarová J, Brucknerová I, Ujházy E (2009) Experimental modeling of hypoxia in pregnancy and early postnatal life. Interdiscip Toxicol 2(1):28

    PubMed  PubMed Central  Google Scholar 

  4. Sombati S, Coulter DA, Delorenzo RJ (1991) Neurotoxic activation of glutamate receptors induces an extended neuronal depolarization in cultured hippocampal neurons. Brain Res 566(1–2):316

    CAS  PubMed  Google Scholar 

  5. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330(9):613

    CAS  PubMed  Google Scholar 

  6. Yue S (1994) The excitatory neurotoxicity of glutamic and the central nervous system injury. Foreign Med Sci Sect Neurol Neurosurg 4:205–208

    Google Scholar 

  7. Waters KA, Machaalani R (2004) NMDA receptors in the developing brain and effects of noxious insults. Neuro-Signals 13(4):162–174. https://doi.org/10.1159/000077523

    Article  CAS  PubMed  Google Scholar 

  8. Ritter LM, Unis AS, Meador-Woodruff JH (2001) Ontogeny of ionotropic glutamate receptor expression in human fetal brain. Dev Brain Res 127(2):123–133

    CAS  Google Scholar 

  9. Elizabeth GPD, Cameron HA, Mcewen BS (1994) Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol 340(4):551

    Google Scholar 

  10. Gould E, Cameron HA (1997) Early NMDA receptor blockade impairs defensive behavior and increases cell proliferation in the dentate gyrus of developing rats. Behav Neurosci 111(1):49

    CAS  PubMed  Google Scholar 

  11. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260(5104):95

    CAS  PubMed  Google Scholar 

  12. Rakic P (1998) Images in neuroscience. Brain development, VI: radial migration and cortical evolution. Am J Psychiatry 155(9):1150–1151

    CAS  PubMed  Google Scholar 

  13. Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of synapse modification. Science 237(4810):42–48

    CAS  PubMed  Google Scholar 

  14. Brooks WJ, Petit TL, Leboutillier JC, Lo R (1991) Rapid alteration of synaptic number and postsynaptic thickening length by NMDA: an electron microscopic study in the occipital cortex of postnatal rats. Synapse 8(1):41

    CAS  PubMed  Google Scholar 

  15. Mcdonald JW, Silverstein FS, Johnston MV (1988) Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459(1):200–203

    CAS  PubMed  Google Scholar 

  16. Balázs R, Hack N, Jørgensen OS (1990) Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture. Int J Dev Neurosci 8(4):347

    PubMed  Google Scholar 

  17. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92(16):7162–7166

    CAS  PubMed  Google Scholar 

  18. Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65(1):21–37

    CAS  PubMed  Google Scholar 

  19. Myseros JS, Bullock R (1995) The rationale for glutamate antagonists in the treatment of traumatic brain injury. Ann N Y Acad Sci 765(1):262–271

    CAS  PubMed  Google Scholar 

  20. Chen H, Liu Z, Zhou Z, Jiang M, Qian L, Wu S (2003) The regulatory effect of memantine on expression and synthesis of heat shock protein 70 gene in neonatal rat models with cerebral hypoxic ischemia. Chin Med J 116(4):558–564

    CAS  PubMed  Google Scholar 

  21. Rao VL, Dogan A, Todd KG, Bowen KK, Dempsey RJ (2001) Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res 911(1):96

    CAS  PubMed  Google Scholar 

  22. Gao Y, Chen HJ, Qian LH, Chen GY (2006) Long-term effects of memantine therapy on neonatal rats with hypoxic-ischemic brain damage. Chin J Contemp Pediatr 8(1):38

    CAS  Google Scholar 

  23. Heidrich A, Rösler M, Riederer P (1997) Pharmacotherapy of Alzheimer dementia: therapy of cognitive symptoms-new results of clinical studies. Fortschr Neurol Psychiatr 65(3):108

    CAS  PubMed  Google Scholar 

  24. Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38(6):735

    CAS  PubMed  Google Scholar 

  25. Liao Z, Zhou X, Luo Z, Huo H, Wang M, Yu X, Cao C, Ding Y, Xiong Z, Yue S (2016) N-methyl-D-aspartate receptor excessive activation inhibited fetal rat lung development in vivo and in vitro. Biomed Res Int 2016(5):5843981

    PubMed  PubMed Central  Google Scholar 

  26. Kalynchuk LE, Pinel JP, Treit D, Barnes SJ, Mceachern JC, Kippin TE (1998) Persistence of the interictal emotionality produced by long-term amygdala kindling in rats. Neuroscience 85(4):1311–1319

    CAS  PubMed  Google Scholar 

  27. Albert DJ, Richmond SE (1975) Septal hyperreactivity: a comparison of lesions within and adjacent to the septum. Physiol Behav 15(3):339–347

    CAS  PubMed  Google Scholar 

  28. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    CAS  PubMed  Google Scholar 

  29. Lubics A, Reglodi DA, Kiss P, Szalai M, Szalontay L, Lengvari I (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157(1):157–165

    PubMed  Google Scholar 

  30. Aboutaleb N, Kalalianmoghaddam H, Eftekhari S, Shahbazi A, Abbaspour H, Khaksari M (2014) Apelin-13 inhibits apoptosis of cortical neurons following brain ischemic reperfusion injury in a transient model of focal cerebral ischemia. Int J Pept Res Ther 20(2):127–132

    CAS  Google Scholar 

  31. Gheibi S, Aboutaleb N, Khaksari M, Kalalian-Moghaddam H, Vakili A, Asadi Y, Mehrjerdi FZ, Gheibi A (2014) Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J Mol Neurosci 54(2):264–270

    CAS  PubMed  Google Scholar 

  32. Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115(1):97–105

    CAS  PubMed  Google Scholar 

  33. Jang EA, Longo LD, Goyal R (2015) Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol 6:176

    PubMed  PubMed Central  Google Scholar 

  34. Golan H, Kashtuzki I, Hallak M, Sorokin Y, Huleihel M (2004) Maternal hypoxia during pregnancy induces fetal neurodevelopmental brain damage: partial protection by magnesium sulfate. J Neurosci Res 78(3):430–441

    CAS  PubMed  Google Scholar 

  35. Golan H, Kashtutsky I, Hallak M, Sorokin Y, Huleihel M (2004) Maternal hypoxia during pregnancy delays the development of motor reflexes in newborn mice. Dev Neurosci 26(1):24

    CAS  PubMed  Google Scholar 

  36. Stocker CJ, Arch JRS, Cawthorne MA (2005) Fetal origins of insulin resistance and obesity. Proc Nutr Soc 64(2):143–151

    CAS  PubMed  Google Scholar 

  37. Ojeda NB, Grigore D, Alexander BT (2008) Intrauterine growth restriction: fetal programming of hypertension and kidney disease. Adv Chronic Kidney Dis 15(2):101–106

    PubMed  PubMed Central  Google Scholar 

  38. Murray E, Fernandes M, Fazel M, Kennedy SH, Villar J, Stein A (2015) Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG Int J Obstet Gynaecol 122(8):1062

    CAS  Google Scholar 

  39. Forsén T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D (2000) The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 133(3):176

    PubMed  Google Scholar 

  40. Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353(17):1802–1809

    CAS  PubMed  Google Scholar 

  41. Dulloo AG (2008) Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance. Best Pract Res Clin Endocrinol Metab 22(1):155–171

    CAS  PubMed  Google Scholar 

  42. Bromleybrits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp JoVE 53:e2920–e2920

    Google Scholar 

  43. Mcnamara RK, Skelton RW (1993) The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Rev 18(1):33–49

    CAS  PubMed  Google Scholar 

  44. Jeffery KJ, Morris RG (1993) Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus 3(2):133

    CAS  PubMed  Google Scholar 

  45. Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056):774–776

    CAS  PubMed  Google Scholar 

  46. Khalaf-Nazzal R, Francis F (2013) Hippocampal development—old and new findings. Neuroscience 248C(38):225

    Google Scholar 

  47. Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6):997–1001

    Google Scholar 

  48. Burd I, Welling J, Kannan G, Johnston MV (2016) Chapter five—excitotoxicity as a common mechanism for fetal neuronal injury with hypoxia and intrauterine inflammation. Adv Pharmacol 76:85–101

    CAS  PubMed  Google Scholar 

  49. Chen HS, Wang YF, Rayudu PV, Edgecomb P, Neill JC, Segal MM, Lipton SA, Jensen FE (1998) Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86(4):1121–1132

    CAS  PubMed  Google Scholar 

  50. Portera-Cailliau C, Price DL, Martin LJ (2015) Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 378(1):10–87

    Google Scholar 

  51. Lipton SA, Nakanishi N (1999) Shakespeare in love-with NMDA receptors? Nat Med 5(3):270–271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all colleagues of the Department of Physiology, Xiangya Medical College, Central South University for technical assistance.

Funding

Funding was provided by National Science Foundation of China (Grant No. 81270121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Yue.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Luo, Z., Liu, Y. et al. Excessive Activation of NMDA Receptors Induced Neurodevelopmental Brain Damage and Cognitive Deficits in Rats Exposed to Intrauterine Hypoxia. Neurochem Res 43, 566–580 (2018). https://doi.org/10.1007/s11064-017-2451-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2451-1

Keywords

Navigation