Skip to main content
Log in

Recombinant Human Erythropoietin Protects Against Hippocampal Damage in Developing Rats with Seizures by Modulating Autophagy via the S6 Protein in a Time-Dependent Manner

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is among the most common neurological disorders. Recurrent seizures result in neuronal death, cognitive deficits and intellectual disabilities in children. Currently, recombinant human erythropoietin (rhEPO) is considered to play a neuroprotective role in nervous system disorders. However, the precise mechanisms through which rhEPO modulates epilepsy remain unknown. Based on results from numerous studies, we hypothesized that rhEPO protects against hippocampal damage in developing rats with seizures probably by modulating autophagy via the ribosomal protein S6 (S6) in a time-dependent manner. First, we observed that rats with recurrent seizures displayed neuronal loss in the hippocampal CA1 region. Second, rhEPO injection reduced neuronal loss and decreased the number of apoptotic cells in the hippocampal CA1 region. Moreover, rhEPO increased the Bcl-2 protein expression levels and decreased the ratio of cleaved caspase-3/caspase-3 in the hippocampus. Finally, rhEPO modulated autophagy in the hippocampus in a time-dependent manner, probably via the S6 protein. In summary, rhEPO protects against hippocampal damage in developing rats with seizures by modulating autophagy in a time-dependent manner, probably via the S6 protein. Consequently, rhEPO is a likely drug candidate that is capable of attenuating brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N (2017) Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88:296–303. https://doi.org/10.1212/WNL.0000000000003509

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jackson CF, Makin SM, Marson AG, Kerr M (2015) Pharmacological interventions for epilepsy in people with intellectual disabilities. Cochrane Database Syst Rev (9):D5399. https://doi.org/10.1002/14651858.CD005399.pub3

  3. Tellez-Zenteno JF, Patten SB, Jetté N, Williams J, Wiebe S (2007) Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia 48:2336–2344. https://doi.org/10.1111/j.1528-1167.2007.01222.x

    PubMed  Google Scholar 

  4. Covanis A, Guekht A, Li S, Secco M, Shakir R, Perucca E (2015) From global campaign to global commitment: the World Health Assembly’s Resolution on epilepsy. Epilepsia 56:1651–1657. https://doi.org/10.1111/epi.13192

    Article  PubMed  Google Scholar 

  5. Sasaki R, Masuda S, Nagao M (2001) Pleiotropic functions and tissue-specific expression of erythropoietin. News Physiol Sci 16:110–113

    CAS  PubMed  Google Scholar 

  6. Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49. https://doi.org/10.1203/00006450-199804001-00243

    Article  CAS  PubMed  Google Scholar 

  7. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97:10526–10531. https://doi.org/10.1073/pnas.97.19.10526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lan KM, Tien LT, Cai Z, Lin S, Pang Y, Tanaka S, Rhodes PG, Bhatt AJ, Savich RD, Fan LW (2016) Erythropoietin ameliorates neonatal hypoxia-ischemia-induced neurobehavioral deficits, neuroinflammation, and hippocampal injury in the juvenile rat. Int J Mol Sci 17:289. https://doi.org/10.3390/ijms17030289

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jang W, Kim HJ, Li H, Jo KD, Lee MK, Yang HO (2016) The neuroprotective effect of erythropoietin on rotenone-induced neurotoxicity in SH-SY5Y cells through the induction of autophagy. Mol Neurobiol 53:3812–3821. https://doi.org/10.1007/s12035-015-9316-x

    Article  CAS  PubMed  Google Scholar 

  10. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900. https://doi.org/10.4161/auto.6.7.13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bockaert J, Marin P (2015) mTOR in brain physiology and pathologies. Physiol Rev 95:1157–1187. https://doi.org/10.1152/physrev.00038.2014

    Article  CAS  PubMed  Google Scholar 

  12. Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci 8:75. https://doi.org/10.3389/fnmol.2015.00075

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tanemura M, Ohmura Y, Deguchi T, Machida T, Tsukamoto R, Wada H, Kobayashi S, Marubashi S, Eguchi H, Ito T, Nagano H, Mori M, Doki Y (2012) Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant 12:102–114. https://doi.org/10.1111/j.1600-6143.2011.03771.x

    Article  CAS  PubMed  Google Scholar 

  14. Crino PB (2016) The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 12:379–392. https://doi.org/10.1038/nrneurol.2016.81

    Article  CAS  PubMed  Google Scholar 

  15. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326. https://doi.org/10.1074/jbc.270.5.2320

    Article  CAS  PubMed  Google Scholar 

  16. Kassai H, Sugaya Y, Noda S, Nakao K, Maeda T, Kano M, Aiba A (2014) Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep 7:1626–1639. https://doi.org/10.1016/j.celrep.2014.04.048

    Article  CAS  PubMed  Google Scholar 

  17. Zeng LH, Rensing NR, Wong M (2009) The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 29:6964–6972. https://doi.org/10.1523/JNEUROSCI.0066-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macias M, Blazejczyk M, Kazmierska P, Caban B, Skalecka A, Tarkowski B, Rodo A, Konopacki J, Jaworski J (2013) Spatiotemporal characterization of mTOR kinase activity following kainic acid induced status epilepticus and analysis of rat brain response to chronic rapamycin treatment. PLoS ONE 8:e64455. https://doi.org/10.1371/journal.pone.0064455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB (2007) Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 25:209–226. https://doi.org/10.1080/08977190701779101

    Article  CAS  PubMed  Google Scholar 

  20. Kurt AH, Bosnak M, Inan SY, Celik A, Uremis MM (2016) Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy. Pharmacol Rep 68:66–70. https://doi.org/10.1016/j.pharep.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Nadam J, Navarro F, Sanchez P, Moulin C, Georges B, Laglaine A, Pequignot JM, Morales A, Ryvlin P, Bezin L (2007) Neuroprotective effects of erythropoietin in the rat hippocampus after pilocarpine-induced status epilepticus. Neurobiol Dis 25:412–426. https://doi.org/10.1016/j.nbd.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  22. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. https://doi.org/10.1016/0013-4694(72)90177-0

    Article  CAS  PubMed  Google Scholar 

  23. Igarashi KM, Ito HT, Moser EI, Moser MB (2014) Functional diversity along the transverse axis of hippocampal area CA1. FEBS Lett 588:2470–2476. https://doi.org/10.1016/j.febslet.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  24. Nishimura M, Gu X, Swann JW (2011) Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiol Dis 44:205–214. https://doi.org/10.1016/j.nbd.2011.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Casanova JR, Nishimura M, Owens JW, Swann JW (2012) Impact of seizures on developing dendrites: implications for intellectual developmental disabilities. Epilepsia 53(Suppl 1):116–124. https://doi.org/10.1111/j.1528-1167.2012.03482.x

    Article  PubMed  Google Scholar 

  26. Camfield PR, Camfield CS (2014) What occurs to children with epilepsy when they become adults? Some facts and opinions. Pediatr Neurol 51:17–23. https://doi.org/10.1016/j.pediatrneurol.2014.02.020

    Article  PubMed  Google Scholar 

  27. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999. https://doi.org/10.1080/01926230701748305

    Article  PubMed  Google Scholar 

  28. Buckmaster PS (2010) Mossy fiber sprouting in the dentate gyrus. Epilepsia 51:39–39. https://doi.org/10.1111/j.1528-1167.2010.02825.x

    Article  Google Scholar 

  29. Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453. https://doi.org/10.1002/ana.21331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang B, Zou J, Han L, Rensing N, Wong M (2016) Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia 57:1317–1325. https://doi.org/10.1111/epi.13429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Héja L (2014) Astrocytic target mechanisms in epilepsy. Curr Med Chem 21:755–763. https://doi.org/10.2174/0929867320666131119160445

    Article  PubMed  Google Scholar 

  32. Kubová H, Mares P, Suchomelová L, Brozek G, Druga R, Pitkänen A (2004) Status epilepticus in immature rats leads to behavioral and cognitive impairment and epileptogenesis. Eur J Neurosci 19:3255–3265. https://doi.org/10.1111/j.0953-816X.2004.03410.x

    Article  PubMed  Google Scholar 

  33. Castro-Torres RD, Chaparro-Huerta V, Flores-Soto ME, Bañuelos-Pineda J, Camins A, Orozco-Suárez SA, Armendáriz-Borunda J, Beas-Zárate C (2014) A single dose of pirfenidone attenuates neuronal loss and reduces lipid peroxidation after kainic acid-induced excitotoxicity in the pubescent rat hippocampus. J Mol Neurosci 52:193–201. https://doi.org/10.1007/s12031-013-0121-6

    Article  CAS  PubMed  Google Scholar 

  34. Benz AP, Niquet J, Wasterlain CG, Rami A (2014) Status epilepticus in the immature rodent brain alters the dynamics of autophagy. Curr Neurovasc Res 11:125–135. https://doi.org/10.2174/1567202611666140305215009

    Article  CAS  PubMed  Google Scholar 

  35. Sun J, Xie C, Liu W, Lu D, Qiao W, Huang Q, Huo Z, Shen H, Lin Z (2012) The effects of simvastatin on hippocampal caspase-3 and Bcl-2 expression following kainate-induced seizures in rats. Int J Mol Med 30:739–746. https://doi.org/10.3892/ijmm.2012.1076

    Article  CAS  PubMed  Google Scholar 

  36. Drexel M, Preidt AP, Sperk G (2012) Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 63:806–817. https://doi.org/10.1016/j.neuropharm.2012.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lévesque M, Avoli M (2013) The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 37:2887–2899. https://doi.org/10.1016/j.neubiorev.2013.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tooyama I, Bellier JP, Park M, Minnasch P, Uemura S, Hisano T, Iwami M, Aimi Y, Yasuhara O, Kimura H (2002) Morphologic study of neuronal death, glial activation, and progenitor cell division in the hippocampus of rat models of epilepsy. Epilepsia 43(Suppl 9):39–43. https://doi.org/10.1046/j.1528-1157.43.s.9.10.x

    Article  PubMed  Google Scholar 

  39. Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, Gassmann M (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–676. https://doi.org/10.1111/j.1460-9568.1996.tb01252.x

    Article  CAS  PubMed  Google Scholar 

  40. Sirén AL, Knerlich F, Poser W, Gleiter CH, Brück W, Ehrenreich H (2001) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 101:271–276

    PubMed  Google Scholar 

  41. Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60:386–392. https://doi.org/10.1093/jnen/60.4.386

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM (2009) Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 31:403–411. https://doi.org/10.1159/000232558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maiese K, Chong ZZ, Hou J, Shang YC (2008) Erythropoietin and oxidative stress. Curr Neurovasc Res 5:125–142. https://doi.org/10.2174/156720208784310231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Villa P, van Beek J, Larsen AK, Gerwien J, Christensen S, Cerami A, Brines M, Leist M, Ghezzi P, Torup L (2007) Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. J Cereb Blood Flow Metab 27:552–563. https://doi.org/10.1038/sj.jcbfm.9600370

    Article  CAS  PubMed  Google Scholar 

  45. Sun Y, Calvert JW, Zhang JH (2005) Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 36:1672–1678. https://doi.org/10.1161/01.STR.0000173406.04891.8c

    Article  CAS  PubMed  Google Scholar 

  46. Silva M, Grillot D, Benito A, Richard C, Nuñez G, Fernández-Luna JL (1996) Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 88:1576–1582

    CAS  PubMed  Google Scholar 

  47. Bendix I, Schulze C, Haefen Cv, Gellhaus A, Endesfelder S, Heumann R, Felderhoff-Mueser U, Sifringer M (2012) Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity. Int J Mol Sci 13:12939–12951. https://doi.org/10.3390/ijms131012939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  49. Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4:590–599. https://doi.org/10.4161/auto.6259

    Article  CAS  PubMed  Google Scholar 

  50. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. https://doi.org/10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  51. Zhu Z, Yan J, Jiang W, Yao XG, Chen J, Chen L, Li C, Hu L, Jiang H, Shen X (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both beta-amyloid production and clearance. J Neurosci 33:13138–13149. https://doi.org/10.1523/JNEUROSCI.4790-12.2013

    Article  CAS  PubMed  Google Scholar 

  52. McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X, Huang Y (2012) Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci 32:15704–15714. https://doi.org/10.1523/JNEUROSCI.2392-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. https://doi.org/10.1038/nature05925

    CAS  PubMed  Google Scholar 

  54. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171:3146–3157. https://doi.org/10.1111/bph.12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cao L, Chen R, Xu J, Lin Y, Wang R, Chi Z (2009) Vitamin E inhibits activated chaperone-mediated autophagy in rats with status epilepticus. Neuroscience 161:73–77. https://doi.org/10.1016/j.neuroscience.2009.02.059

    Article  CAS  PubMed  Google Scholar 

  56. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260. https://doi.org/10.1111/j.1755-5949.2012.00295.x

    Article  CAS  PubMed  Google Scholar 

  57. Button RW, Luo S, Rubinsztein DC (2015) Autophagic activity in neuronal cell death. Neurosci Bull 31:382–394. https://doi.org/10.1007/s12264-015-1528-y

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chi X, Huang C, Li R, Wang W, Wu M, Li J, Zhou D (2017) Inhibition of mTOR pathway by rapamycin decreases P-glycoprotein expression and spontaneous seizures in pharmacoresistant epilepsy. J Mol Neurosci 61:553–562. https://doi.org/10.1007/s12031-017-0897-x

    Article  CAS  PubMed  Google Scholar 

  59. Buckmaster PS, Ingram EA, Wen X (2009) Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci 29:8259–8269. https://doi.org/10.1523/JNEUROSCI.4179-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Vliet EA, Forte G, Holtman L, den Burger JC, Sinjewel A, de Vries HE, Aronica E, Gorter JA (2012) Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 53:1254–1263. https://doi.org/10.1111/j.1528-1167.2012.03513.x

    Article  PubMed  Google Scholar 

  61. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915. https://doi.org/10.1016/j.molcel.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  62. Chong ZZ, Shang YC, Wang S, Maiese K (2012) PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS ONE 7:e45456. https://doi.org/10.1371/journal.pone.0045456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81200998) and the Beijing Natural Science Foundation (7092105 and 7112131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Han or Jiong Qin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures in studies involving animals were in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Peking University First Hospital, China at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Han, Y., Du, J. et al. Recombinant Human Erythropoietin Protects Against Hippocampal Damage in Developing Rats with Seizures by Modulating Autophagy via the S6 Protein in a Time-Dependent Manner. Neurochem Res 43, 465–476 (2018). https://doi.org/10.1007/s11064-017-2443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2443-1

Keywords

Navigation