Neurochemical Research

, Volume 43, Issue 1, pp 3–11 | Cite as

Origin of Oligodendrocytes in the Vertebrate Optic Nerve: A Review

  • Katsuhiko OnoEmail author
  • Yukie Hirahara
  • Hitoshi Gotoh
  • Tadashi Nomura
  • Hirohide Takebayashi
  • Hisao Yamada
  • Kazuhiro Ikenaka
Review Paper


One of the unsolved problems in the research field of oligodendrocyte (OL) development has been the site(s) of origin of optic nerve OLs and its precursor cells (OPCs). It is generally accepted that OLs in the optic nerve are derived from the brain, and thus optic nerve OLs are immigrant cells. We previously demonstrated the brain origin of optic nerve OPCs in chick embryos. However, the site of optic nerve OPC origin has not been examined experimentally in developing rodents for the past two decades. We have recently reported that optic nerve OPCs in mice arise in the preoptic area by E12.5 and gradually migrate caudally and enter the optic nerve. These OPCs give rise to myelinating OLs in the optic nerve in the postnatal or adult stages. Surprisingly, there are species differences with respect to the origin of optic nerve OPCs between chicks and mice. Here, we summarize the site of OPC origin in the optic nerve based on our own previous and recent results, and discuss possible mechanisms underlying these species differences.


Preoptic area Olig2 PDGFRα Oligodendrocyte precursor cell Chick embryo Mouse fetus 



Anterior entopeduncular area


Central nervous system


Cre recombinase-estrogen receptor fusion protein (gene)


1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (fluorescent dye)


Enhanced green fluorescent protein




Medial ganglionic eminence

O-2A cell

Oligodendrocyte-type2 astrocyte cell




Oligodendrocyte precursor cell


Platelete-derived growth factor


Platelete-derived growth factor receptor alpha subunit


Preoptic area


Sonic hedgehog



We would like to express our sincere appreciation to Ms. Masako Kawano for technical help, and to Dr. Martyn Goulding for providing reporter mice. This work was supported by a Grant-in-Aid for Scientific research provided by JSPS to KO (JP17K07079) to YH (JP26430077), Grant-in-Aid for Scientific Research on Innovative Areas “Glia assembly” by MEXT (JP25117005, JP25117007) to KI and HT, and also by a collaboration Grant provided by NIPS.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Butt AM, Ibrahim M, Berry M (1998) Axon-myelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum. J Neurocytol 27:259–269Google Scholar
  2. 2.
    Prince JH (1955) The origin and pattern of oligodendroglial cells in the vertebrate optic nerve. J Comp Neurol 103:541–563Google Scholar
  3. 3.
    Mori S, Leblond CP (1969) Electron microscopic features and proliferation of astrocytes in the corpus callosum of the rat. J Comp Neurol 137:197–225Google Scholar
  4. 4.
    Skoff RP, Price DL, Stocks A (1976) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J Comp Neurol 169:313–334Google Scholar
  5. 5.
    Mori S, Leblond CP (1970) Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J Comp Neurol 139:1–28Google Scholar
  6. 6.
    Hirano M, Goldman JE (1988) Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21:155–167Google Scholar
  7. 7.
    Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396Google Scholar
  8. 8.
    Miller RH, Ffrench-Constant C, Raff MC (1989) The macroglial cells of the rat optic nerve. Annu Rev Neurosci 12:517–534Google Scholar
  9. 9.
    Espinosa de los Monteros A, Zhang M, De Vellis J (1993) O2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc Natl Acad Sci USA 90:50–54Google Scholar
  10. 10.
    Hirahara Y, Wakabayashi T, Mori T, Koike T, Yao I, Tsuda M, Honke K, Gotoh H, Ono K, Yamada H (2017) Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. J Neurochem 140:435–450Google Scholar
  11. 11.
    Trotter J, Bitter-Suermann D, Schachner M (1989) Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res 22:369–383Google Scholar
  12. 12.
    Ono K, Ikenaka K (2013) Lineage and development: oligodendrocytes. In: Kettenmann H, Ransom BR (eds) Neuroglia, 3rd edn. Oxford University Press, Oxford, pp 148–158Google Scholar
  13. 13.
    Baracskay KL, Kidd GJ, Miller RH, Trapp BD (2007) NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia 55:1001–1010Google Scholar
  14. 14.
    Ono K, Kagawa T, Tsumori T, Yokota S, Yasui Y (2001) Morphological changes and cellular dynamics of oligodendrocyte lineage cells in the developing vertebrate central nervous system. Dev Neurosci 23:346–355Google Scholar
  15. 15.
    Nishiyama A, Boshans L, Goncalves CM, Wegrzyn J, Patel KD (2016) Lineage, fate, and fate potential of NG2-glia. Brain Res 1638:116–128Google Scholar
  16. 16.
    Small RK, Riddle P, Noble M (1987) Evidence for migration of oligodendrocyte-type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328:155–157Google Scholar
  17. 17.
    Warf BC, Fok-Seang J, Miller RH (1991) Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J Neurosci 11:2477–2488Google Scholar
  18. 18.
    Fok-Seang J, Miller RH (1994) Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord. J Neurosci Res 37:219–235Google Scholar
  19. 19.
    Ono K, Bansal R, Payne J, Rutishauser U, Miller RH (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121:1743–1754Google Scholar
  20. 20.
    Birling MC, Price J (1998) A study of the potential of the embryonic rat telencephalon to generate oligodendrocytes. Dev Biol 193:100–113Google Scholar
  21. 21.
    Naruse M, Ishino Y, Kumar A, Ono K, Takebayashi H, Yamaguchi M, Ishizaki Y, Ikenaka K, Hitoshi S (2016) The Dorsoventral boundary of the germinal zone is a specialized niche for the generation of cortical oligodendrocytes during a restricted temporal window. Cereb Cortex 26:2800–2810Google Scholar
  22. 22.
    Naruse M, Ishizaki Y, Ikenaka K, Tanaka A, Hitoshi S (2016) Origin of oligodendrocytes in mammalian forebrains: a revised perspective. J Physiol Sci. doi:
  23. 23.
    Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179Google Scholar
  24. 24.
    Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562Google Scholar
  25. 25.
    Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333:562–565Google Scholar
  26. 26.
    Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53:309–319Google Scholar
  27. 27.
    Hart IK, Richardson WD, Heldin CH, Westermark B, Raff MC (1989) PDGF receptors on cells of the oligodendrocyte-type-2 astrocyte (O-2A) cell lineage. Development 105:595–603Google Scholar
  28. 28.
    Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117:525–533Google Scholar
  29. 29.
    Pringle NP, Mudhar HS, Collarini EJ, Richardson WD (1992) PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 115:535–551Google Scholar
  30. 30.
    Fok-Seang J, Miller RH (1992) Astrocyte precursors in neonatal rat spinal cord cultures. J Neurosci 12:2751–2764Google Scholar
  31. 31.
    Hall A, Giese NA, Richardson WD (1996) Spinal cord oligodendrocytes develop from ventrally derived progenitor cells that express PDGF alpha-receptors. Development 122:4085–4094Google Scholar
  32. 32.
    Fruttiger M, Calver AR, Kruger WH, Mudhar HS, Michalovich D, Takakura N, Nishikawa S, Richardson WD (1996) PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17:1117–1131Google Scholar
  33. 33.
    Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK, Betsholtz C, Richardson WD (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20:869–882Google Scholar
  34. 34.
    Fruttiger M, Karlsson L, Hall AC, Abramsson A, Calver AR, Bostrom H, Willetts K, Bertold CH, Heath JK, Betsholtz C, Richardson WD (1999) Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126:457–467Google Scholar
  35. 35.
    Zhu Q, Zhao X, Zheng K, Li H, Huang H, Zhang Z, Mastracci T, Wegner M, Chen Y, Sussel L, Qiu M (2014) Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development 141:548–555Google Scholar
  36. 36.
    Pringle NP, Yu WP, Guthrie S, Roelink H, Lumsden A, Peterson AC, Richardson WD (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177:30–42Google Scholar
  37. 37.
    Orentas DM, Miller RH (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev Biol 177:43–53Google Scholar
  38. 38.
    Orentas DM, Hayes JE, Dyer KL, Miller RH (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126:2419–2429Google Scholar
  39. 39.
    Trousse F, Giess MC, Soula C, Ghandour S, Duprat AM, Cochard P (1995) Notochord and floor plate stimulate oligodendrocyte differentiation in cultures of the chick dorsal neural tube. J Neurosci Res 41:552–560Google Scholar
  40. 40.
    Poncet C, Soula C, Trousse F, Kan P, Hirsinger E, Pourquie O, Duprat AM, Cochard P (1996) Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech Dev 60:13–32Google Scholar
  41. 41.
    Maier CE, Miller RH (1997) Notochord is essential for oligodendrocyte development in Xenopus spinal cord. J Neurosci Res 47:361–371Google Scholar
  42. 42.
    Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, Richardson W, Qiu M (2002) Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129:681–693Google Scholar
  43. 43.
    Wada T, Kagawa T, Ivanova A, Zalc B, Shirasaki R, Murakami F, Iemura S, Ueno N, Ikenaka K (2000) Dorsal spinal cord inhibits oligodendrocyte development. Dev Biol 227:42–55Google Scholar
  44. 44.
    Bansal R, Stefansson K, Pfeiffer SE (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside. J Neurochem 58:2221–2229Google Scholar
  45. 45.
    Ono K, Yasui Y, Rutishauser U, Miller RH (1997) Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron 19:283–292Google Scholar
  46. 46.
    Miller RH, Ono K (1998) Morphological analysis of the early stages of oligodendrocyte development in the vertebrate central nervous system. Microsc Res Tech 41:441–453Google Scholar
  47. 47.
    Nakazawa T, Tachi S, Aikawa E, Ihnuma M (1993) Formation of the myelinated nerve fiber layer in the chicken retina. Glia 8:114–121Google Scholar
  48. 48.
    Cho SS, Lucas JJ, Roh EJ, Yoo YB, Lee KH, Park KH, Hwang DH, Baik SH (1997) Distribution of transferrin binding protein immunoreactivity in the chicken central and peripheral nervous systems. J Comp Neurol 382:260–271Google Scholar
  49. 49.
    Fu H, Qiu M (2001) Migration and differentiation of Nkx-2.2+ oligodendrocyte progenitors in embryonic chicken retina. Brain Res Dev 129:115–118Google Scholar
  50. 50.
    Ono K, Tsumori T, Kishi T, Yokota S, Yasui Y (1998) Developmental appearance of oligodendrocytes in the embryonic chick retina. J Comp Neurol 398:309–322Google Scholar
  51. 51.
    Gao L, Miller RH (2006) Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons. J Neurosci 26:7619–7628Google Scholar
  52. 52.
    Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002) Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16:165–170Google Scholar
  53. 53.
    Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689Google Scholar
  54. 54.
    Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148Google Scholar
  55. 55.
    Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329Google Scholar
  56. 56.
    Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343Google Scholar
  57. 57.
    Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401Google Scholar
  58. 58.
    Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157Google Scholar
  59. 59.
    Nakahira E, Kagawa T, Shimizu T, Goulding MD, Ikenaka K (2006) Direct evidence that ventral forebrain cells migrate to the cortex and contribute to the generation of cortical myelinating oligodendrocytes. Dev Biol 291:123–131Google Scholar
  60. 60.
    Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12:1157–1163Google Scholar
  61. 61.
    Furusho M, Ono K, Takebayashi H, Masahira N, Kagawa T, Ikeda K, Ikenaka K (2006) Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev Biol 293:348–357Google Scholar
  62. 62.
    Masahira N, Takebayashi H, Ono K, Watanabe K, Ding L, Furusho M, Ogawa Y, Nabeshima Y, Alvarez-Buylla A, Shimizu K, Ikenaka K (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev Biol 293:358–369Google Scholar
  63. 63.
    Ono K, Clavairoly A, Nomura T, Gotoh H, Uno A, Armant O, Takebayashi H, Zhang Q, Shimamura K, Itohara S, Parras CM, Ikenaka K (2014) Development of the prethalamus is crucial for thalamocortical projection formation and is regulated by Olig2. Development 141:2075–2084Google Scholar
  64. 64.
    Ono K, Takebayashi H, Ikeda K, Furusho M, Nishizawa T, Watanabe K, Ikenaka K (2008) Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. Dev Biol 320:456–468Google Scholar
  65. 65.
    Ono K, Yoshii K, Tominaga H, Gotoh H, Nomura T, Takebayashi H, Ikenaka K (2017) Oligodendrocyte precursor cells in the mouse optic nerve originate in the preoptic area. Brain Struct Funct 222:2241–2248Google Scholar
  66. 66.
    Nanmoku K, Kawano M, Iwasaki Y, Ikenaka K (2003) Highly efficient gene transduction into the brain using high-titer retroviral vectors. Dev Neurosci 25:152–161Google Scholar
  67. 67.
    Ono K, Tsumori T, Yokota S, Yasui Y (2001) Extensive proliferation of oligodendrocyte precursors in the parenchyma of the embryonic chick central nervous system. Dev Biol 231:77–86Google Scholar
  68. 68.
    Bin JM, Harris SN, Kennedy TE (2016) The oligodendrocyte-specific antibody ‘CC1’ binds Quaking 7. J Neurochem 139(2):181–186Google Scholar
  69. 69.
    Prestoz L, Chatzopoulou E, Lemkine G, Spassky N, Lebras B, Kagawa T, Ikenaka K, Zalc B, Thomas JL (2004) Control of axonophilic migration of oligodendrocyte precursor cells by Eph-ephrin interaction. Neuron Glia Biol 1:73–83Google Scholar
  70. 70.
    Olivier C, Cobos I, Perez Villegas EM, Spassky N, Zalc B, Martinez S, Thomas JL (2001) Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128:1757–1769Google Scholar
  71. 71.
    Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540Google Scholar
  72. 72.
    Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, Rowitch DH, Richardson WD (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128:2545–2554Google Scholar
  73. 73.
    Qi Y, Stapp D, Qiu M (2002) Origin and molecular specification of oligodendrocytes in the telencephalon. Trends Neurosci 25:223–225Google Scholar
  74. 74.
    Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, BerlinGoogle Scholar
  75. 75.
    Gotoh H, Ueda T, Uno A, Ohuchi H, Ikenaka K, Ono K (2011) Expression of myelin genes in the developing chick retina. Gene Expr Patterns 11:471–475Google Scholar
  76. 76.
    Tian C, Zou S, Hu B (2016) Extraocular source of oligodendrocytes contribute to retinal myelination and optokinetic responses in zebrafish. Invest Ophthalmol Vis Sci 57:2129–2138Google Scholar
  77. 77.
    Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438Google Scholar
  78. 78.
    Nomura T, Kawaguchi M, Ono K, Murakami Y (2013) Reptiles: a new model for brain evo-devo research. J Exp Zool B 320:57–73Google Scholar
  79. 79.
    Czopka T (2016) Insights into mechanisms of central nervous system myelination using zebrafish. Glia 64:333–349Google Scholar
  80. 80.
    Park HC, Mehta A, Richardson JS, Appel B (2002) olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev Biol 248:356–368Google Scholar
  81. 81.
    Lyons DA, Talbot WS (2014) Glial cell development and function in zebrafish. Cold Spring Harbor Perspect Biol 7:a020586Google Scholar
  82. 82.
    Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86Google Scholar
  83. 83.
    Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73Google Scholar
  84. 84.
    Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31:791–807Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Developmental NeurobiologyKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Department of Anatomy and Cell ScienceKansai Medical UniversityOsakaJapan
  3. 3.Division of Neurobiology and AnatomyNiigata UniversityNiigataJapan
  4. 4.Division of Neurobiology and BioinformaticsNational Institute for Physiological Sciences (NIPS)OkazakiJapan
  5. 5.Department of Physiological Sciences, School of Life ScienceThe Graduate University of Advanced Studies (Sokendai)Miki-choJapan

Personalised recommendations