Skip to main content

Advertisement

Log in

Estrogen Receptor β Mediated Neuroprotective Efficacy of Cicer microphyllum Seed Extract in Global Hypoxia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hypoxia induced oxidative stress and neurodegeneration in the hippocampus has been implicated for memory impairment in conditions like stroke, ischemia and hypobaric hypoxia. The present study, aimed at investigating the potential of ethanolic extract of Cicer microphyllum seeds (CSE) for amelioration of global hypoxia induced neurodegeneration in CA1 region of hippocampus. CSE supplementation considerably reduced neurodegeneration and dendritic atrophy in CA1 neurons along with improvement of memory in hypoxic rats. This effect of CSE was partly attributed to its antioxidant activity resulting in reduction of lipid peroxidation, protein oxidation and DNA damage during exposure to chronic hypoxia. CSE also promoted dendritic arborization through activation of estrogen receptor beta (ERβ) and phosphorylation of extracellular signal regulated kinase (ERK1/2) which was independent of brain derived neurotrophic factor (BDNF) mediated signalling mechanisms. Extra nuclear activation of ERK1/2 by ERβ resulted in phosphorylation of cyclic AMP response element binding protein (CREB) leading to increased expression of PSD-95.These molecular alterations translated to behavioural changes in CSE administered hypoxic animals that performed better in Morris Water Maze Task as compared to vehicle treated hypoxic animals. Toxicological studies show NOEAL > 2000 mg/kg b.w. for oral administration of CSE indicating its safety for consumption. Our findings not only suggest the neuroprotective potential of CSE in hypoxia but also provide evidence for involvement of estrogen receptor and pCREB mediated nootropic effect of the extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hota SK, Barhwal K, Singh SB, Ilavazhagan G (2008) Chronic hypobaric hypoxia induced apoptosis in CA1 region of hippocampus: a possible role of NMDAR mediated p75NTR upregulation. Exp Neurol 212:5–13

    Article  CAS  PubMed  Google Scholar 

  2. Barhwal K, Das SK, Kumar A, Hota SK, Srivastava RB (2015) Insulin receptor A and Sirtuin 1 synergistically improve learning and spatial memory following chronic salidroside treatment during hypoxia. J Neurochem 135:332–46

    Article  Google Scholar 

  3. Biswal S, Das D, Barhwal K, Kumar A, Nag TC, Thakur MK, Hota SK, Kumar B (2016) Epigenetic regulation of SNAP25 prevents progressive glutamate excitotoxicty in hypoxic CA3 neurons. Mol Neurobiol 2016:1–15

    Google Scholar 

  4. Barhwal K, Singh SB, Hota SK, Jayalakshmi K, Ilavazhagan G (2007) Acetyl-L-carnitine ameliorates hypobaric hypoxic impairment and spatial memory deficits in rats. Eur J Pharmacol 570:97–107

    Article  CAS  PubMed  Google Scholar 

  5. Kumar K, Sharma S, Vashishtha V, Bhardwaj P, Kumar A, Barhwal K, Hota SK, Malairaman U, Singh B (2016) Terminalia arjuna bark extract improves diuresis and attenuates acute hypobaric hypoxia induced cerebral vascular leakage. J Ethanopharmacol 180:43–53

    Article  Google Scholar 

  6. Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, Firoz CK, Tabrez S (2016) Neuroprotective role of steroidal sex hormones: an overview. CNS Neurosci Ther 22:342–50

    Article  Google Scholar 

  7. Luine VN (2014) Estradiol and cognitive function: past, present and future. Horm Behav 66:602–618

    Article  Google Scholar 

  8. Boulware MI, Heisle JD, Frick KM (2013) The memory-enhancing effects of hippocampal estrogen receptor activation involve metabotropic glutamate receptor signaling. J Neurosci 33:15184–15194

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava DP (2012) Two-step wiring plasticity–a mechanism for estrogen-induced rewiring of cortical circuits. J Steroid Biochem Mol Biol 131:17–23

    Article  CAS  PubMed  Google Scholar 

  10. Driggers PH, Segars JH (2002) Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 13:422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitra SW, Hoskin E, Yudkovitz J et al (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144:2055–2067

    Article  CAS  PubMed  Google Scholar 

  12. Haghparast A, Fatahi Z, Alamdary SZ, Reisi Z, Khodagholi F (2014) Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress. Cell Mol Neurobiol 34:277–288

    Article  CAS  PubMed  Google Scholar 

  13. Dar AA, Rath SK, Qaudri A et al (2015) Isolation, cytotoxic evaluation, and simultaneous quantification of eight bioactive secondary metabolites from Cicer microphyllum by high-performance thin-layer chromatography. J Sep Sci 38:4021–4028

    Article  CAS  PubMed  Google Scholar 

  14. Kour K, Sangwan PL, Khan I et al (2011) Alcoholic extract of Cicer microphyllum augments Th1 immune response in normal and chronically stressed Swiss albino mice. J Pharm Pharmacol 63:267–277

    Article  CAS  PubMed  Google Scholar 

  15. Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108(1):S11–S26

    Google Scholar 

  16. Harini R, Ezhumalai M, Pugalendi KV (2012) Antihyperglycemic effect of biochanin A, a soy isoflavone, on streptozotocin-diabetic rats. Eur J Pharmacol 15(1–3):89–94

    Article  Google Scholar 

  17. Naderi V, Khaksari M, Abbasi R, Maghool F (2015) Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci 18:138–144

    PubMed  PubMed Central  Google Scholar 

  18. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci 98(20):11569–11574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen Thi PA, Chen MH, Li N, Zhuo XJ, Xie L (2016) PD98059 protects brain against cells death resulting from ROS/ERK activation in a cardiac arrest rat model. Oxid Med Cell Longev. doi:10.1155/2016/3723762

    PubMed  PubMed Central  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  21. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24

    Article  CAS  PubMed  Google Scholar 

  22. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582

    Article  CAS  PubMed  Google Scholar 

  23. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Google Scholar 

  24. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    Article  CAS  PubMed  Google Scholar 

  25. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  26. Ehara A, Ueda S (2009) Application of Fluoro-jade C in acute and chronic neurodegeneration models: utilities and staining differences. Acta Histochem Cytochem 42: 171–179

    Article  PubMed  PubMed Central  Google Scholar 

  27. Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20(15):5775–5781

    CAS  PubMed  Google Scholar 

  28. Hota SK, Barhwal K, Baitharu I, Prasad D, Singh SB, Ilavazhagan G (2009) Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment. Neurobiol Dis 34:23–39

    Article  CAS  PubMed  Google Scholar 

  29. Titus AD, Shankaranarayana RBS, Harsha HN et al (2007) Hypobaric hypoxia-induced dendritic atrophy of hippocampal neurons is associated with cognitive impairment in adult rats. Neuroscience 145:265–278

    Article  CAS  PubMed  Google Scholar 

  30. Figueroa S, Oset-Gasque MJ, Arce C. Martinez-Honduvilla CJ, González MP (2006) Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture. J Neurosci Res 83:441–449

    Article  CAS  PubMed  Google Scholar 

  31. Morri R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  Google Scholar 

  32. Biswal S, Sharma D, Kumar K, Nag TC, Barhwal K, Hota SK, Kumar B (2016) Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging. Neurobiol Learn Mem 133:157–170

    Article  CAS  PubMed  Google Scholar 

  33. Hota SK, Hota KB, Prasad D, Ilavazhagan G, Singh SB (2010) Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic Biol Med 49:178–191

    Article  Google Scholar 

  34. Shukitt-Hale B, Banderet LE, Lieberman HR (1998) Elevation-dependent symptom, mood, and performance changes produced by exposure to hypobaric hypoxia. Int J Aviat Psychol 8:319–334

    Article  Google Scholar 

  35. Shao B, Cheng Y, Jin K (2012) Estrogen, neuroprotection and neurogenesis after ischemic stroke. Curr Drug Targets 13:188–198

    Article  CAS  PubMed  Google Scholar 

  36. Gélinas S, Martinoli MG (2002) Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res 70:90–96

    Article  Google Scholar 

  37. Osborne CK (1998) Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51:227–238

    Article  CAS  PubMed  Google Scholar 

  38. An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808–17814

    Article  CAS  PubMed  Google Scholar 

  39. Hota KB, Hota SK, Chaurasia OP, Singh SB (2012) Acetyl-L-carnitine-mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22:723–736

    Article  CAS  PubMed  Google Scholar 

  40. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  Google Scholar 

  41. Duthie GG. Duthie SJ. Kyle JA (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13:79–106

    Article  CAS  PubMed  Google Scholar 

  42. Baeza I, Fdez-Tresguerres J, Ariznavarreta C, De la FM (2010) Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology 11:687–701

    Article  CAS  PubMed  Google Scholar 

  43. Su Q, Cheng Y, Jin K et al (2016) Estrogen therapy increases BDNF expression and improves post-stroke depression in ovariectomy-treated rats. Exp Ther Med 12:1843–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635

    Article  CAS  PubMed  Google Scholar 

  45. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388:507–525

    Article  CAS  PubMed  Google Scholar 

  46. Fan X, Xu H, Warner M, Gustafsson JA (2010) ERbeta in CNS: new roles in development and function. Prog Brain Res 181:233–250

    Article  CAS  PubMed  Google Scholar 

  47. Mukherjee TK, Reynolds PR, Hoidal JR (2005) Differential effect of estrogen receptor alpha and beta agonist on the receptor for advanced glycation end product expression in human microvascular endothelial cells. Biochim Biophys Acta 1745(3):300–309

    Article  CAS  PubMed  Google Scholar 

  48. Zhao L, Woody SK, Chhibber A (2015) Estrogen receptor β in Alzhimer’s disease: from mechanism to therapeutics. Ageing Res Rev 24:178–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sheldahl LC, Shapiro RA, Bryant DN, Koemer IP (2008) Estrogen induces rapid translocation of estrogen receptor beta but not estrogen receptor alpha, to the neuronal plasma membrane. Neuroscience 53(3):751–761

    Article  Google Scholar 

  50. Hota SK, Hota KB, Prasad D, Ilavazhagan G, Singh SB (2010) Oxidative stress induced alteration in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic Biol Med 49(2):178–191

    Article  CAS  PubMed  Google Scholar 

  51. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931

    Article  CAS  PubMed  Google Scholar 

  52. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19(8):1951–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW (2008) Rapid estrogen signaling in the brain. Neurosignals 16:140–153

    Article  CAS  PubMed  Google Scholar 

  54. Yang LC, Zhang QG, Zhou CF et al (2010) Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One 5:e9851

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jover-Mengual T, Zukin RS, Etgen AM (2007) MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology 148:1131–1143

    Article  CAS  PubMed  Google Scholar 

  56. Abrahám IM, Todman MG, Korach KS, Herbison AE (2004) Critical in vivo roles for classical estrogen receptors in rapid estrogen actionson intracellular signaling in mouse brain. Endocrinology 145(7):3055–3061

    Article  PubMed  Google Scholar 

  57. Santen RJ, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal therapy in breast cancer. Clin Cancer Res 10(2):337S–345S

    Google Scholar 

  58. Zhao L, Brinton RD (2007) Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res 1172:48–59

    Article  CAS  PubMed  Google Scholar 

  59. Donzelli A, Braida D, Finardi A, Capurro V, Valsecchi AE, Colleoni M, Sala M (2010) Neuroprotective effects of genistein in Mongolian gerbils: estrogen receptor-β involvement. J Pharmacol Sci 114:158–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Defence Research and Development Organization, India to financially support the study financially. Authors also acknowledge Dr. Bhuvnesh Kumar, Ex-Director DIHAR for his guidance help and support for conducting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Hota.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Deepti Sharma and Surya Narayan Biswal have contributed equally as first author.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11064_2017_2395_MOESM1_ESM.tif

Table S1 and S2: shows the effect of acute and chronic (saline control animals), 300 and 2000 mg/kg of CSE extract treatment on animals body weight, food intake, water intake respectively. Data represented as mean±SEM (TIF 67 KB)

Supplementary material 2 (TIF 68 KB)

11064_2017_2395_MOESM3_ESM.tif

Figure S3: Representative bright field image of Hoechst staining in CA1 region of hippocampus at different dose concentration (TIF 254 KB)

11064_2017_2395_MOESM4_ESM.tif

Figure S4: Representative Immunoblots showing (a) expression of ERK1/2, Elk-1 in cytosolic fraction and CREB expression in nuclear fraction. (b) Densitometric graphs depict the change in the expression of (i) ERK1/2, (ii) Elk-1 and (iii) expression of CREB following exposure to hypobaric hypoxia and administration of CSE along with ER-β antagonist PHTPP and ERK inhibitor PD98059, respectively. Data represented as mean±SEM. Bar from left to right denotes N = Vehicle treated Normoxia, NC = CSE 200 mg/kg treated normoxia, H = Vehicle treated Hypoxia and HC = CSE 200 mg/kg treated hypoxia, HC+PHTPP = CSE 200 mg/kg treated hypoxia with ERβ inhibitor PHTPP, HC+PD98059 = CSE 200 mg/kg treated hypoxia with ERK inhibitor PD98059 ‘*’ denotes p≤0.05 when compared to N, ‘#’ denotes p≤0.05 when compared to H (TIF 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Biswal, S.N., Kumar, K. et al. Estrogen Receptor β Mediated Neuroprotective Efficacy of Cicer microphyllum Seed Extract in Global Hypoxia. Neurochem Res 42, 3474–3489 (2017). https://doi.org/10.1007/s11064-017-2395-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2395-5

Keywords

Navigation