Skip to main content
Log in

Antidepressant-like Effect of Bacopaside I in Mice Exposed to Chronic Unpredictable Mild Stress by Modulating the Hypothalamic–Pituitary–Adrenal Axis Function and Activating BDNF Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic–pituitary–adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

BS-I:

Bacopaside I

CUMS:

Chronic unpredictable mild stress

FST:

Forced swimming test

GR:

Glucocorticoid receptor

HPA:

Hypothalamic–pituitary–adrenal

MR:

Mineralocorticoid receptor

OFT:

Open field test

Pcreb:

Phosphorylated cAMP response element-binding protein

pERK1/2:

Phosphorylated extracellular signal-regulated kinase ½

SPT:

Sucrose preference test

TST:

Tail suspension test

References

  1. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  CAS  PubMed  Google Scholar 

  2. Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206

    Article  PubMed  Google Scholar 

  3. Shelton RC (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  Google Scholar 

  4. Peng YL, Liu YN, Lei L, Xia W, Jiang CL, Wang YX (2012) Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J Neuroinflamm 9:1–12

    Article  CAS  Google Scholar 

  5. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, Mcgrath PJ (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163:28–40

    Article  PubMed  Google Scholar 

  7. Kennedy SH (2006) A review of antidepressant treatments today. Eur Neuropsychopharmacol 16:S619–S623

    Article  CAS  Google Scholar 

  8. Hill MN, Hellemans KGC, Verma P, Gorzalka BB, Weinberg J (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36:2085–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henn FA, Vollmayr B (2005) Stress models of depression: Forming genetically vulnerable strains. Neurosci Biobehav Rev 29:799–804

    Article  PubMed  Google Scholar 

  10. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4: 775–790

    Article  CAS  PubMed  Google Scholar 

  11. Garcia LSB, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:450–455

    Article  CAS  PubMed  Google Scholar 

  12. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501.

    Article  CAS  PubMed  Google Scholar 

  13. Barden N (2004) Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J Psychiatry Neurosci 29:185–193

    PubMed  PubMed Central  Google Scholar 

  14. Jindal A, Mahesh R, Bhatt S (2013) Etazolate rescues behavioral deficits in chronic unpredictable mild stress model: modulation of hypothalamic-pituitary-adrenal axis activity and brain-derived neurotrophic factor level. Neurochem Int 63:465–475

    Article  CAS  PubMed  Google Scholar 

  15. Medina A, Seasholtz AF, Sharma V, Burke S, Jr BW, Myers RM, Schatzberg A, Akil H, Watson SJ (2013) Glucocorticoid and mineralocorticoid receptor expression in the human hippocampus in major depressive disorder. J Psychiatr Res 47:307–314

    Article  PubMed  Google Scholar 

  16. Mao QQ, Ip SP, Ko KM, Tsai SH, Che CT (2009) Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 33:1211–1216

    Article  CAS  PubMed  Google Scholar 

  17. Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    Article  PubMed  Google Scholar 

  18. Hoshaw BA, Malberg JE, Lucki I (2005) Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 1037:204–208

    Article  CAS  PubMed  Google Scholar 

  19. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada SI (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  CAS  PubMed  Google Scholar 

  21. Aguiar S, Borowski T (2013) Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 16:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  22. Banerjee R, Hazra S, Ghosh AK, Mondal AC (2014) Chronic administration of bacopa monniera increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig 11:297–306

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mathur D, Goyal K, Koul V, Anand A (2016) The molecular links of re-emerging therapy: a review of evidence of Brahmi (Bacopa monniera). Front Pharmacol 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chakravarty AK, Sarkar T, Masuda K, Shiojima K, Nakane T, Kawahara N (2002) Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry 33:553–556

    Google Scholar 

  25. Zhou Y, Shen YH, Zhang C, Su J, Liu RH, Zhang WD (2007) Triterpene saponins from Bacopa monnieri and their antidepressant effects in two mice models. J Nat Prod 70:652–655

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Liu F, Yue R, Li Y, Zhang J, Wang S, Zhang S, Wang R, Lei S, Zhang W (2013) The antidepressant-like effect of bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system. Pharmacol Biochem Behav 110:224–230

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Yue R, Zhang J, Shan L, Wang R, Zhang W (2013) Neuroprotective effects of bacopaside I in ischemic brain injury. Restor Neurol Neurosci 31:109–123

    CAS  PubMed  Google Scholar 

  28. Tang J, Xue W, Xia B, Li R, Tao W, Chen C, Zhang H, Wu R, Wang Q, Wu H (2015) Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep 5:338–341

    Google Scholar 

  29. Pothion S, Bizot JF, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146

    Article  PubMed  Google Scholar 

  30. Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG (2012) Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 166:1872–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng M (2005) The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  Google Scholar 

  32. Gigliucci V, O’Dowd G, Casey S, Egan D, Gibney S, Harkin A (2013) Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology 228:157–166

    Article  CAS  PubMed  Google Scholar 

  33. Kurhe Y, Radhakrishnan M, Gupta D (2014) Ondansetron attenuates depression co-morbid with obesity in obese mice subjected to chronic unpredictable mild stress; an approach using behavioral battery tests. Metab Brain Dis 29:701–710

    Article  CAS  PubMed  Google Scholar 

  34. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. NeuropsychoBiology 52:90–110

    Article  CAS  PubMed  Google Scholar 

  35. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Fu Q, Li Y, Li S, Xue J, Ma S (2014) Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor. Fitoterapia 98:1–10

    Article  CAS  PubMed  Google Scholar 

  37. Tao W, Dong Y, Su Q, Wang H, Chen Y, Xue W, Chen C, Xia B, Duan J, Chen G (2016) Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res 308:177–186

    Article  CAS  PubMed  Google Scholar 

  38. Mcewen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ge JF, Gao WC, Cheng WM, Lu WL, Tang J, Peng L, Li N, Chen FH (2013) Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress. Eur Neuropsychopharmacol 24:172–180

    Article  PubMed  Google Scholar 

  40. Taksande BG, Faldu DS, Dixit MP, Sakaria JN, Aglawe MM, Umekar MJ, Kotagale NR (2013) Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur J Pharmacol 720:115–120

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs E, Czéh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 14(Suppl 5):S481–S490

    Article  CAS  PubMed  Google Scholar 

  42. Yi LT, Li J, Geng D, Liu BB, Fu Y, Tu JQ, Liu Y, Weng LJ (2013) Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. J Ethnopharmacol 147:245–253

    Article  CAS  PubMed  Google Scholar 

  43. Numakawa T, Adachi N, Richards M, Chiba S, Kunugi H (2013) Brain-derived neurotrophic factor and glucocorticoids: Reciprocal influence on the central nervous system. Neuroscience 239:157–172

    Article  CAS  PubMed  Google Scholar 

  44. Tardito D, Musazzi L, Tiraboschi E, Mallei A, Racagni G, Popoli M (2009) Early induction of CREB activation and CREB-regulating signalling by antidepressants. Int J Neuropsychopharmacol 12:1367–1381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Major Project of China (2011ZX09307-002-03), the National Natural Science Foundation of China (81230090, 81520108030, 81573318, 81373301 and 1302658), the Scientific Foundation of Shanghai China (13401900103, 13401900101 and 12401900801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinru Liu or Weidong Zhang.

Ethics declarations

Conflict of interest

All authors declared that there is no potential conflict of interest.

Additional information

Xianpeng Zu and Mingjian Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, X., Zhang, M., Li, W. et al. Antidepressant-like Effect of Bacopaside I in Mice Exposed to Chronic Unpredictable Mild Stress by Modulating the Hypothalamic–Pituitary–Adrenal Axis Function and Activating BDNF Signaling Pathway. Neurochem Res 42, 3233–3244 (2017). https://doi.org/10.1007/s11064-017-2360-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2360-3

Keywords

Navigation