Advertisement

Neurochemical Research

, Volume 43, Issue 1, pp 136–146 | Cite as

Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats

  • Yoshitomo Ueda
  • Sachiyo Misumi
  • Mina Suzuki
  • Shino Ogawa
  • Ruriko Nishigaki
  • Akimasa Ishida
  • Cha-Gyun Jung
  • Hideki HidaEmail author
Original Paper

Abstract

We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

Keywords

Hypoxia–ischemia in premature infants White matter injury Gait analysis Transmission electron microscopy Caspr staining 

Notes

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research in priority area (C) (# 26430020 to HH, # 16K10100 to SM), and young area (B) (# 26860851 to SM), and a Grant-in-Aid for Research Activity Start-up (# 15H06538 to YU) from the Japan Society for the Promotion of Science (JSPS). This study was also supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Adaptive Circuit Shift) to H.H. We thank Hiroshi Takase in Core Laboratory of Nagoya City University Graduate School to support TEM study. We thank Edanz Group Ltd. for providing language help in editing this manuscript.

Supplementary material

11064_2017_2352_MOESM1_ESM.tif (2.9 mb)
Supplementary material 1 (TIF 2931 KB) Supplementary Fig. 1 Comparison between groups of the gait indices for each paw. We compared undamaged shams (sham operation followed by normoxia), controls (sham operation followed by 6% hypoxia), and WMI (right CCA occlusion followed by 6% hypoxia) groups. † p < 0.05 by one-way ANOVA and post hoc Tukey-Kramer test

References

  1. 1.
    Saigal S, Doyle LW (2008) An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371(9608):261–269. doi: https://doi.org/10.1016/S0140-6736(08)60136-1 Google Scholar
  2. 2.
    Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES (2012) Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 345:e7976Google Scholar
  3. 3.
    Rees S, Inder T (2005) Fetal and neonatal origins of altered brain development. Early Hum Dev 81(9):753–761. doi: https://doi.org/10.1016/j.earlhumdev.2005.07.004 Google Scholar
  4. 4.
    Hamrick SE, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, Piecuch R, Ferriero DM (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145(5):593–599. doi: https://doi.org/10.1016/j.jpeds.2004.05.042 Google Scholar
  5. 5.
    Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ (2003) White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. Am J Neuroradiol 24(5):805–809Google Scholar
  6. 6.
    Volpe JJ (2003) Cerebral white matter injury of the premature infant-more common than you think. Pediatrics 112(1 Pt 1):176–180Google Scholar
  7. 7.
    Misumi S, Ueda Y, Nishigaki R, Suzuki M, Ishida A, Jung CG, Hida H (2016) Dysfunction in motor coordination in neonatal white matter injury model without apparent neuron loss. Cell Transplant 25(7):1381–1393. doi: https://doi.org/10.3727/096368915x689893 Google Scholar
  8. 8.
    Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8(1):110–124. doi: https://doi.org/10.1016/S1474-4422(08)70294-1 Google Scholar
  9. 9.
    Craig A, Ling Luo N, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181(2):231–240 pii]Google Scholar
  10. 10.
    Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22(2):455–463 pii]Google Scholar
  11. 11.
    Derrick M, Drobyshevsky A, Ji X, Tan S (2007) A model of cerebral palsy from fetal hypoxia-ischemia. Stroke 38(2 Suppl):731–735. doi: https://doi.org/10.1161/01.STR.0000251445.94697.64 Google Scholar
  12. 12.
    Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, Gladson CL, Beardsley DJ, Murdoch G, Back SA, Tan S (2004) Preterm fetal hypoxia–ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J Neurosci 24(1):24–34. doi: https://doi.org/10.1523/JNEUROSCI.2816-03.2004 Google Scholar
  13. 13.
    Buser JR, Segovia KN, Dean JM, Nelson K, Beardsley D, Gong X, Luo NL, Ren J, Wan Y, Riddle A, McClure MM, Ji X, Derrick M, Hohimer AR, Back SA, Tan S (2010) Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 30(5):1053–1065. doi: https://doi.org/10.1038/jcbfm.2009.286 Google Scholar
  14. 14.
    Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, Price D, Powell E, Lecky-Thompson L, Thei L, Chandrasekaran M, Hristova M, Cady EB, Gressens P, Golay X, Raivich G (2013) Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 136(Pt 1):90–105. doi: https://doi.org/10.1093/brain/aws285
  15. 15.
    Robertson NJ, Kato T, Bainbridge A, Chandrasekaran M, Iwata O, Kapetanakis A, Faulkner S, Cheong J, Iwata S, Hristova M, Cady E, Raivich G (2013) Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model. J Neurochem 124(5):645–657. doi: https://doi.org/10.1111/jnc.12097 Google Scholar
  16. 16.
    Greenwood K, Cox P, Mehmet H, Penrice J, Amess PN, Cady EB, Wyatt JS, Edwards AD (2000) Magnesium sulfate treatment after transient hypoxia–ischemia in the newborn piglet does not protect against cerebral damage. Pediatr Res 48(3):346–350. doi: https://doi.org/10.1203/00006450-200009000-00014 Google Scholar
  17. 17.
    Baburamani AA, Castillo-Melendez M, Walker DW (2013) VEGF expression and microvascular responses to severe transient hypoxia in the fetal sheep brain. Pediatr Res 73(3):310–316. doi: https://doi.org/10.1038/pr.2012.191 Google Scholar
  18. 18.
    Drury PP, Davidson JO, Bennet L, Booth LC, Tan S, Fraser M, van den Heuij LG, Gunn AJ (2014) Partial neural protection with prophylactic low-dose melatonin after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 34(1):126–135. doi: https://doi.org/10.1038/jcbfm.2013.174 Google Scholar
  19. 19.
    Back SA, Rosenberg PA (2014) Pathophysiology of glia in perinatal white matter injury. Glia 62(11):1790–1815. doi: https://doi.org/10.1002/glia.22658 Google Scholar
  20. 20.
    Riddle A, Dean J, Buser JR, Gong X, Maire J, Chen K, Ahmad T, Cai V, Nguyen T, Kroenke CD, Hohimer AR, Back SA (2011) Histopathological correlates of magnetic resonance imaging-defined chronic perinatal white matter injury. Ann Neurol 70(3):493–507. doi: https://doi.org/10.1002/ana.22501 Google Scholar
  21. 21.
    Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 9(2):131–141. doi: https://doi.org/10.1002/ana.410090206 Google Scholar
  22. 22.
    Yesilirmak DC, Kumral A, Tugyan K, Cilaker S, Baskin H, Yilmaz O, Duman N, Ozkan H (2008) Effects of activated protein C on neonatal hypoxic ischemic brain injury. Brain Res 1210:56–62. doi: https://doi.org/10.1016/j.brainres.2008.02.088 Google Scholar
  23. 23.
    Traudt CM, Juul SE (2013) Erythropoietin as a neuroprotectant for neonatal brain injury: animal models. Methods Mol Biol 982:113–126. doi: https://doi.org/10.1007/978-1-62703-308-4_7 Google Scholar
  24. 24.
    Alonso-Alconada D, Alvarez A, Lacalle J, Hilario E (2012) Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histol Histopathol 27(6):771–783Google Scholar
  25. 25.
    Jantzie LL, Cheung PY, Todd KG (2005) Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 25(3):314–324. doi: https://doi.org/10.1038/sj.jcbfm.9600025 Google Scholar
  26. 26.
    Wang X, Zhu C, Qiu L, Hagberg H, Sandberg M, Blomgren K (2003) Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia. J Neurochem 86(2):351–362 pii]Google Scholar
  27. 27.
    Ivacko JA, Sun R, Silverstein FS (1996) Hypoxic–ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 39(1):39–47. doi: https://doi.org/10.1203/00006450-199604001-00241 Google Scholar
  28. 28.
    Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW (2001) Perinatal hypoxia–ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci 23(3):203–208. doi: https://doi.org/10.1159/000046144 Google Scholar
  29. 29.
    Liu Y, Silverstein FS, Skoff R, Barks JD (2002) Hypoxic–ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res 51(1):25–33. doi: https://doi.org/10.1203/00006450-200201000-00007 Google Scholar
  30. 30.
    Levison SW, Rothstein RP, Romanko MJ, Snyder MJ, Meyers RL, Vannucci SJ (2001) Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells. Dev Neurosci 23(3):234–247 pii]Google Scholar
  31. 31.
    Aya-ay J, Mayer J, Eakin AK, Muffly BG, Anello M, Sandy JD, Gottschall PE (2005) The effect of hypoxic–ischemic brain injury in perinatal rats on the abundance and proteolysis of brevican and NG2. Exp Neurol 193(1):149–162. doi: https://doi.org/10.1016/j.expneurol.2004.11.021 Google Scholar
  32. 32.
    Dingley J, Tooley J, Porter H, Thoresen M (2006) Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia–ischemia. Stroke 37(2):501–506. doi: https://doi.org/10.1161/01.STR.0000198867.31134.ac Google Scholar
  33. 33.
    Mujsce DJ, Towfighi J, Stern D, Vannucci RC (1990) Mannitol therapy in perinatal hypoxic–ischemic brain damage in rats. Stroke 21(8):1210–1214Google Scholar
  34. 34.
    Delcour M, Russier M, Amin M, Baud O, Paban V, Barbe MF, Coq JO (2012) Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res 232(1):233–244. doi: https://doi.org/10.1016/j.bbr.2012.03.029 Google Scholar
  35. 35.
    Delcour M, Olivier P, Chambon C, Pansiot J, Russier M, Liberge M, Xin D, Gestreau C, Alescio-Lautier B, Gressens P, Verney C, Barbe MF, Baud O, Coq JO (2012) Neuroanatomical, sensorimotor and cognitive deficits in adult rats with white matter injury following prenatal ischemia. Brain Pathol 22(1):1–16. doi: https://doi.org/10.1111/j.1750-3639.2011.00504.x Google Scholar
  36. 36.
    Delcour M, Russier M, Xin DL, Massicotte VS, Barbe MF, Coq JO (2011) Mild musculoskeletal and locomotor alterations in adult rats with white matter injury following prenatal ischemia. Int J Dev Neurosci 29(6):593–607. doi: https://doi.org/10.1016/j.ijdevneu.2011.02.010 Google Scholar
  37. 37.
    Mizuno K, Hida H, Masuda T, Nishino H, Togari H (2008) Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model. Neonatology 94(4):255–266. doi: https://doi.org/10.1159/000151644 Google Scholar
  38. 38.
    Masuda T, Hida H, Kanda Y, Aihara N, Ohta K, Yamada K, Nishino H (2007) Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. J Neurosci Res 85(1):213–222. doi: https://doi.org/10.1002/jnr.21089 Google Scholar
  39. 39.
    Ueda Y, Masuda T, Ishida A, Misumi S, Shimizu Y, Jung CG, Hida H (2014) Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats. J Neurosci Res. doi: https://doi.org/10.1002/jnr.23434
  40. 40.
    Galtrey CM, Fawcett JW (2007) Characterization of tests of functional recovery after median and ulnar nerve injury and repair in the rat forelimb. J Peripher Nerv Syst 12(1):11–27. doi: https://doi.org/10.1111/j.1529-8027.2007.00113.x Google Scholar
  41. 41.
    Paxinos G, Watson C (2004) The rat brain in stereotaxic coordinates—the new coronal set, 5th edn. Academic Press, CambridgeGoogle Scholar
  42. 42.
    Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115(2):169–179 pii]Google Scholar
  43. 43.
    Sizonenko SV, Sirimanne E, Mayall Y, Gluckman PD, Inder T, Williams C (2003) Selective cortical alteration after hypoxic-ischemic injury in the very immature rat brain. Pediatr Res 54(2):263–269. doi: https://doi.org/10.1203/01.PDR.0000072517.01207.87 Google Scholar
  44. 44.
    Etxeberria A, Hokanson KC, Dao DQ, Mayoral SR, Mei F, Redmond SA, Ullian EM, Chan JR (2016) Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity. J Neurosci 36(26):6937–6948. doi: https://doi.org/10.1523/jneurosci.0908-16.2016 Google Scholar
  45. 45.
    Sizonenko SV, Kiss JZ, Inder T, Gluckman PD, Williams CE (2005) Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic–hypoxic injury in the P3 immature rat brain. Pediatr Res 57(6):865–872. doi: https://doi.org/10.1203/01.PDR.0000157673.36848.67 Google Scholar
  46. 46.
    Huang Z, Liu J, Cheung PY, Chen C (2009) Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic–ischemic brain injury. Brain Res 1301:100–109. doi: https://doi.org/10.1016/j.brainres.2009.09.006 Google Scholar
  47. 47.
    Stadlin A, James A, Fiscus R, Wong YF, Rogers M, Haines C (2003) Development of a postnatal 3-day-old rat model of mild hypoxic-ischemic brain injury. Brain Res 993(1–2):101–110. doi:10.1016/j.brainres.2003.08.058Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departments of Neurophysiology and Brain ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
  2. 2.Departments of Obstetrics and GynecologyNagoya City University Graduate School of Medical SciencesNagoyaJapan

Personalised recommendations