Skip to main content

Advertisement

Log in

2′,3′-Dideoxycytidine Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson’s disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2′,3′-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H, Abramov AY, Hardy J, Wood NW, Whitworth AJ, Laman H, Plun-Favreau H (2013) The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16:1257–1265

    Article  CAS  PubMed  Google Scholar 

  3. Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J, Oertel WH, Rakic P, Hirsch EC, Hunot S (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104:3585–3590

    Article  PubMed  PubMed Central  Google Scholar 

  4. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:478–500

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Lin Q, Ma Q, Lu C, Tzeng CM (2014) Genetic predisposition to Parkinson’s disease and cancer. Curr Cancer Drug Targets 14:310–321

    Article  CAS  PubMed  Google Scholar 

  6. Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Xu Y, Qin K, Wang T, Cao X (2010) Cell cycle events mediate lactacystin-induced apoptotic death of neuronal PC12 cells. Cell Biol Int 34:1181–1187

    Article  PubMed  Google Scholar 

  8. Wang H, Zhang Z, Huang J, Zhang P, Xiong N, Wang T (2014) The contribution of Cdc2 in rotenone-induced G2/M arrest and caspase-3-dependent apoptosis. J Mol Neurosci 53:31–40

    Article  PubMed  Google Scholar 

  9. Zhang Z, Cao X, Xiong N, Wang H, Huang J, Sun S, Liang Z, Wang T (2010) DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis 15:105–115

    Article  CAS  PubMed  Google Scholar 

  10. Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K, Kunkel TA, Wilson SH, Pedersen LC (2007) The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair 6:1709–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151

    Article  CAS  PubMed  Google Scholar 

  12. Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759

    Article  CAS  PubMed  Google Scholar 

  13. Geng X, Tian X, Tu P, Pu X (2007) Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson’s disease. Eur J Pharmacol 564:66–74

    Article  CAS  PubMed  Google Scholar 

  14. Kasai N, Mizushina Y, Murata H, Yamazaki T, Ohkubo T, Sakaguchi K, Sugawara F (2005) Sulfoquinovosylmonoacylglycerol inhibitory mode analysis of rat DNA polymerase β. FEBS J 272:4349–4361

    Article  CAS  PubMed  Google Scholar 

  15. Servant L, Bieth A, Hayakawa H, Cazaux C, Hoffmann JS (2002) Involvement of DNA polymerase beta in DNA replication and mutagenic consequences. J Mol Biol 315:1039–1047

    Article  CAS  PubMed  Google Scholar 

  16. El-Khodor BF, Oo TF, Kholodilov N, Burke RE (2003) Ectopic expression of cell cycle markers in models of induced programmed cell death in dopamine neurons of the rat substantia nigra pars compacta. Exp Neurol 179:17–27

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 21:2661–2668

    CAS  PubMed  Google Scholar 

  18. Yurov YB, Vorsanova SG, Iourov IY (2011) The DNA replication stress hypothesis of Alzheimer’s disease. Sci World J 11:2602–2612

    Article  Google Scholar 

  19. Yang Y, Herrup K (2007) Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta 1772:457–466

    Article  CAS  PubMed  Google Scholar 

  20. Copani A, Hoozemans JJ, Caraci F, Calafiore M, Van Haastert ES, Veerhuis R, Rozemuller AJ, Aronica E, Sortino MA, Nicoletti F (2006) DNA polymerase-β is expressed early in neurons of Alzheimer’s disease brain and is loaded into DNA replication forks in neurons challenged with β-amyloid. J Neurosci 26:10949–10957

    Article  CAS  PubMed  Google Scholar 

  21. Copani A, Sortino MA, Caricasole A, Chiechio S, Chisari M, Battaglia G, Giuffrida-Stella AM, Vancheri C, Nicoletti F (2002) Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J 16:2006–2008

    CAS  PubMed  Google Scholar 

  22. Osheroff WP, Jung HK, Beard WA, Wilson SH, Kunkel TA (1999) The fidelity of DNA polymerase beta during distributive and processive DNA synthesis. J Biol Chem 274:3642–3650

    Article  CAS  PubMed  Google Scholar 

  23. Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24:9232–9239

    Article  CAS  PubMed  Google Scholar 

  24. Louat T, Servant L, Rols MP, Bieth A, Teissie J, Hoffmann JS, Cazaux C (2001) Antitumor activity of 2′,3′-dideoxycytidine nucleotide analog against tumors up-regulating DNA polymerase beta. Mol Pharmacol 60:553–558

    CAS  PubMed  Google Scholar 

  25. Alvarez-Fischer D, Noelker C, Grunewald A, Vulinovic F, Guerreiro S, Fuchs J, Lu L, Lombes A, Hirsch EC, Oertel WH, Michel PP, Hartmann A (2013) Probenecid potentiates MPTP/MPP+ toxicity by interference with cellular energy metabolism. J Neurochem 127:782–792

    Article  CAS  PubMed  Google Scholar 

  26. Blum AS, Dal Pan GJ, Feinberg J, Raines C, Mayjo K, Cornblath DR, McArthur JC (1996) Low-dose zalcitabine-related toxic neuropathy: frequency, natural history, and risk factors. Neurology 46:999–1003

    Article  CAS  PubMed  Google Scholar 

  27. Carey P (2000) Peripheral neuropathy: zalcitabine reassessed. Int J STD AIDS 11:417–423

    Article  CAS  PubMed  Google Scholar 

  28. Sanna MD, Quattrone A, Mello T, Ghelardini C, Galeotti N (2014) The RNA-binding protein HuD promotes spinal GAP43 overexpression in antiretroviral-induced neuropathy. Exp Neurol 261:343–353

    Article  CAS  PubMed  Google Scholar 

  29. de Araujo DF, de Melo Neto AP, Oliveira IS, Brito BS, de Araujo IT, Barros IS, Lima JW, Horta WG, Gondim Fde A (2016) Small (autonomic) and large fiber neuropathy in Parkinson disease and parkinsonism. BMC Neurol 16:139

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vital A, Lepreux S, Vital C (2014) Peripheral neuropathy and parkinsonism: a large clinical and pathogenic spectrum. J Peripher Nerv Syst 19:333–342

    Article  CAS  PubMed  Google Scholar 

  31. Gibbs JE, Thomas SA (2002) The distribution of the anti-HIV drug, 2′3′-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors. J Neurochem 80:392–404

    Article  CAS  PubMed  Google Scholar 

  32. Borg N, Ståhle L (1998) Pharmacokinetics and distribution over the blood-brain barrier of zalcitabine (2′,3′-dideoxycytidine) and BEA005 (2′,3′-dideoxy-3′-hydroxymethylcytidine) in rats, studied by microdialysis. Antimicrob Agents Chemother 42:2174–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yarchoan R, Thomas R, Allain J-P, Mcatee N, Dubinsky R, Mitsuya H, Lawley T, Safai B, Myers C, Perno C (1988) Phase I studies of 2′,3′-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet 331:76–81

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Grant No. 81571249 to Zhentao Zhang, Grant No. 81501107 to Jing Xiong, and Grant No. 81671051 to Zhaohui Zhang).

Author Contributions

ZZ and ZZ conceived and designed study; JN and JX performed most of animal research and part of the in vitro experiments; DH, FZ, SN and TW performed some of the in vitro experiments. SM helped in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Jianyi Niu and Jing Xiong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Xiong, J., Hu, D. et al. 2′,3′-Dideoxycytidine Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease. Neurochem Res 42, 2996–3004 (2017). https://doi.org/10.1007/s11064-017-2330-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2330-9

Keywords

Navigation