Skip to main content

Advertisement

Log in

Progressive Pathological Changes in Neurochemical Profile of the Hippocampus and Early Changes in the Olfactory Bulbs of Tau Transgenic Mice (rTg4510)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tauopathies such as Alzheimer’s disease and frontotemporal lobe degeneration (FTLD-tau) dementia, characterized by pathologic aggregation of the microtubule-associated tau protein and formation of neurofibrillary tangles, have been linked to neurodegeneration and cognitive decline. The early detection of cerebral abnormalities and the identification of biological contributors to the continuous pathologic processes of neurodegeneration in tauopathies critically hinge on sensitive and reliable measures of biomarkers in the living brain. In this study, we measured alterations in a number of key neurochemicals associated with tauopathy-induced neurodegeneration in the hippocampus and the olfactory bulbs of a transgenic mouse model of FTLD-tauopathy, line rTg4510, using in vivo 1H magnetic resonance spectroscopy at 9.4 T. The rTg4510 line develops tauopathy at a young age (4–5 months), reaching a severe stage by 8–12 months of age. Longitudinal measurement of neurochemical concentrations in the hippocampus of mice from 5 to 12 months of age showed significant progressive changes with distinctive disease staging patterns including N-acetylaspartate, myo-inositol, γ-aminobutyric acid, glutathione and glutamine. The accompanying hippocampal volume loss measured using magnetic resonance imaging showed significant correlation (p < 0.01) with neurochemical measurements. Neurochemical alterations in the olfactory bulbs were more pronounced than those in the hippocampus in rTg4510 mice. These results demonstrate progressive neuropathology in the mouse model and provide potential biomarkers of early neuropathological events and effective noninvasive monitoring of the disease progression and treatment efficacy, which can be easily translated to clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gilley J, Seereeram A, Ando K, Mosely S, Andrews S, Kerschensteiner M, Misgeld T, Brion JP, Anderton B, Hanger DP, Coleman MP (2012) Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse. Neurobiol Aging 33(3):621 e621–621 e615. doi:10.1016/j.neurobiolaging.2011.02.014

    Article  Google Scholar 

  2. Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, Guimaraes A, Yue M, Lewis J, Carlson G, Hutton M, Ashe KH (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647

    Article  CAS  PubMed  Google Scholar 

  3. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  4. Trojanowski JQ, Lee VM-Y (2002) The role of tau in Alzheimer’s disease. Med Clin N Am 86:615–627

    Article  CAS  PubMed  Google Scholar 

  5. Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98:993–1006

    Article  PubMed  Google Scholar 

  6. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126(Pt 3):238–292. doi:10.1016/j.brainresbull.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  8. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 168:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang D, Xie Z, Stephenson D, Morton D, Hicks CD, Brown TM, Sriram R, O’Neil S, Raunig D, Bocan T (2011) Volumetric MRI and MRS provide sensitive measures of Alzheimer’s disease neuropathology in inducible Tau transgenic mice (rTg4510). NeuroImage 54:2652–2658

    Article  CAS  PubMed  Google Scholar 

  11. Arnold SE, Lee EB, Moberg PJ, Stutzbach L, Kazi H, Han L-Y, Lee VMY, Trojanowski JQ (2010) Olfactory epithelium amyloid-b and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol 67:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili K, Miklossy J (2003) Early olfactory involvement in Alzheimer’s disease. Can J Neurol Sci 30:20–25

    Article  CAS  PubMed  Google Scholar 

  13. Talamo BR, Rudel R, Kosik KS, Lee VMY, Neff S, Adelman L, Kauer JS (1989) Pathological changes in olfactory neurons in patients with Alzheimer’s disease. Nature 337:736–739

    Article  CAS  PubMed  Google Scholar 

  14. Kovács T, Cairns NJ, Lantos PL (1999) β-Amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in aging and Alzheimer’s disease. Neuropatho App Neurobiol 25:481–491

    Article  Google Scholar 

  15. Wesson DW, Levy E, Nixon RA, Wilson DA (2010) Olfactory dysfunction correlates with amyloid-b burden in an Alzheimer’s disease mouse model. J Neurosci 30:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomann PA, Dos Santos V, Seidl U, Toro P, Essig M, Schroder J (2009) MRI-derived atrophy of the olfactory bulb and tract in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 17:213–221

    Article  PubMed  Google Scholar 

  17. Thomann PA, Dos Santos V, Toro P, Schonknecht P, Essig M, Schroder J (2009) Reduced olfactory bulb and tract volume in early Alzheimer’s disease—a MRI study. Neurobiol Aging 30:838–841

    Article  PubMed  Google Scholar 

  18. Murphy C, Jinich S (1996) Olfactory dysfunction in down’s syndrome. Neurobiol Aging 17:631–637

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimura N, Kubota S, Fukushima Y, Kudo H, Ishigaki H, Yoshida Y (1990) Down’s syndrome in middle age. Topographical distribution and immunoreactivity of brain lesions in an autopsied patient. Acta Pathol Jpn 40:735–743

    CAS  PubMed  Google Scholar 

  20. Kim J, Choi I-Y, Michaelis ML, Lee P (2011) Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer’s disease using manganese-enhanced MRI. NeuroImage 56:1286–1292

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brian PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. Neurology 55:210–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, Ross BD (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72

    Article  CAS  PubMed  Google Scholar 

  23. Valenzuela MJ, Sachdev P (2001) Magnetic resonance spectroscopy in AD. Neurology 56:592–598

    Article  CAS  PubMed  Google Scholar 

  24. Marjanska M, Curran GL, Wengenack TM, Henry P-G, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse model of Alzheimer’s disease with proton magnetic resonance spectroscopy. PNAS 102:11906–11910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dedeoglu A, Choi J-K, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012:60–65

    Article  CAS  PubMed  Google Scholar 

  26. Chen SQ, Wang PJ, Ten GJ, Zhan W, Li MH, Zang FC (2009) Role of myo-inositol by magnetic resonance spectroscopy in early diagnosis of Alzheimer’s disease in APP/PS1 transgenic mice. Dement Geriatr Cogn Disord 28:558–566

    Article  PubMed  Google Scholar 

  27. Wells JA, O’Callaghan JM, Holmes HE, Powell NM, Johnson RA, Siow B, Torrealdea F, Ismail O, Walker-Samuel S, Golay X, Rega M, Richardson S, Modat M, Cardoso MJ, Ourselin S, Schwarz AJ, Ahmed Z, Murray TK, O’Neill MJ, Collins EC, Colgan N, Lythgoe MF (2015) In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage 111:369–378. doi:10.1016/j.neuroimage.2015.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holmes HE, Powell NM, Ma D, Ismail O, Harrison IF, Wells JA, Colgan N, O’Callaghan JM, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, O’Neill MJ, Collins EC, Fisher EM, Ourselin S, Lythgoe MF (2017) Comparison of in vivo and ex vivo MRI for the detection of structural abnormalities in a mouse model of tauopathy. Front Neuroinform 11:20. doi:10.3389/fninf.2017.00020

    Article  PubMed  PubMed Central  Google Scholar 

  29. Colgan N, Siow B, O’Callaghan JM, Harrison IF, Wells JA, Holmes HE, Ismail O, Richardson S, Alexander DC, Collins EC, Fisher EM, Johnson R, Schwarz AJ, Ahmed Z, O’Neill MJ, Murray TK, Zhang H, Lythgoe MF (2016) Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage 125:739–744. doi:10.1016/j.neuroimage.2015.10.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahara N, Perez PD, Lin WL, Dickson DW, Ren Y, Zeng H, Lewis J, Febo M (2014) Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study. Neurobiol Aging 35(6):1364–1374. doi:10.1016/j.neurobiolaging.2013.12.009

    Article  PubMed  Google Scholar 

  31. Majid T, Ali YO, Venkitaramani DV, Jang MK, Lu HC, Pautler RG (2014) In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. Neuroimage Clin 4:711–717. doi:10.1016/j.nicl.2014.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wells JA, Holmes HE, O’Callaghan JM, Colgan N, Ismail O, Fisher EM, Siow B, Murray TK, Schwarz AJ, O’Neill MJ, Collins EC, Lythgoe MF (2015) Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer’s disease. J Cereb Blood Flow Metab 35(3):359–362. doi:10.1038/jcbfm.2014.224

    Article  CAS  PubMed  Google Scholar 

  33. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29:804–811

    Article  CAS  PubMed  Google Scholar 

  34. Mlynarik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. MRM 56:965–970

    Article  CAS  PubMed  Google Scholar 

  35. Provencher SW (1993) Estimation of metabolic concentration from localized in vivo 1H spectroscopy. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  36. Rasband WS (1997–2011) ImageJ. National Institute of Health, Bethesda

  37. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464(7292):1201–1204. doi:10.1038/nature08890

    Article  PubMed  PubMed Central  Google Scholar 

  38. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771. doi:10.1016/j.neuron.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frost B, Gotz J, Feany MB (2015) Connecting the dots between tau dysfunction and neurodegeneration. Trends Cell Biol 25(1):46–53. doi:10.1016/j.tcb.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  40. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732. doi:10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  41. Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li H-F, Feng L, Lecanu L, Walker BR, Planel E, Arancio O, Gozes I, Aisen PS (2008) A neuronal microtubule-interacting agent, NAPVSIPQ, reduces Tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 325:146–153

    Article  CAS  PubMed  Google Scholar 

  42. Howlett DR, Richardson JC (2009) The pathology of APP transgenic mice: a model of Alzheimer’s disease or simply overexpression of APP? Histol Histopathol 24(1):83–100

    CAS  PubMed  Google Scholar 

  43. Vetreno RP, Yaxley R, Paniagua B, Johnson GA, Crews FT (2017) Adult rat cortical thickness changes across age and following adolescent intermittent ethanol treatment. Addict Biol 22(3):712–723. doi:10.1111/adb.12364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Alzheimer’s Association (NIRG-07-60405 to Dr. Lee). Hoglund Brain Imaging Center is supported by the Hoglund Family Foundation and NIH (P30 HD002528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Choi, IY., Duff, K.E. et al. Progressive Pathological Changes in Neurochemical Profile of the Hippocampus and Early Changes in the Olfactory Bulbs of Tau Transgenic Mice (rTg4510). Neurochem Res 42, 1649–1660 (2017). https://doi.org/10.1007/s11064-017-2298-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2298-5

Keywords

Navigation