Skip to main content
Log in

Complexity of Stomach–Brain Interaction Induced by Molecular Hydrogen in Parkinson’s Disease Model Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Molecular hydrogen (H2), as a new medical gas, has protective effects in neurological disorders including Parkinson’s disease (PD). In our previous report, the neuroprotective effect of drinking water with saturated H2 (H2 water) in PD mice might be due to stomach–brain interaction via release of gastric hormone, ghrelin. In the present study, we assessed the effect of H2-induced ghrelin more precisely. To confirm the contribution of ghrelin in H2 water-drinking PD model mice, ghrelin-knock out (KO) mice were used. Despite the speculation, the effect of H2 water was still observed in ghrelin-KO PD model mice. To further check the involvement of ghrelin, possible contribution of ghrelin-induced vagal afferent effect was tested by performing subdiaphragmatic vagotomy before treating with H2 water and administration of MPTP (1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine). The protective effect of H2 water was still observed in the vagotomized mice in substantia nigra, suggesting that stimulation of vagal afferent nerves is not involved in H2-induced neuroprotection. Other neuroprotective substitutes in ghrelin-KO mice were speculated because H2-induced neuroprotection was not cancelled by ghrelin receptor antagonist, D-Lys3 GHRP-6, in ghrelin-KO PD model mice, unlike in wild-type PD model mice. Our results indicate that ghrelin may not be the only factor for H2-induced neuroprotection and other factors can substitute the role of ghrelin when ghrelin is absent, raising intriguing options of research for H2-responsive factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    Article  CAS  PubMed  Google Scholar 

  2. Noda M, Fujita K, Hamner MA, Yamafuji M, Akimoto N, Kido MA, Tanaka Y, Nakabeppu Y, Ransom BR (2012) Molecular hydrogen protects against central nervous system white matter ischemic injury. SfN 42nd annual meeting;660.14

  3. Ohta S (2014) Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 144:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Ohta S (2011) Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr Pharm Des 17:2241–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noda M, Fujita K, Ohsawa I, Ito M, Ohno K. (2014) Multiple effects of molecular hydrogen and its distinct mechanism. J Neurol Disord 2:6

    Google Scholar 

  6. Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M, Sakumi K, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ 13:551–563

    Article  CAS  PubMed  Google Scholar 

  7. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194

    Article  CAS  PubMed  Google Scholar 

  8. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  CAS  PubMed  Google Scholar 

  9. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M (2009) Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS ONE 4:e7247

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fu Y, Ito M, Fujita Y, Ichihara M, Masuda A, Suzuki Y, Maesawa S, Kajita Y, Hirayama M, Ohsawa I, Ohta S, Ohno K (2009) Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett 453:81–85

    Article  CAS  PubMed  Google Scholar 

  11. Fujita K, Nakabeppu Y, Noda M (2011) Therapeutic effects of hydrogen in animal models of Parkinson’s disease. Parkinsons Dis 2011:307875

    PubMed  PubMed Central  Google Scholar 

  12. Noda M, Fujita K, Lee CH, Yoshioka T (2011) The principle and the potential approach to ROS-dependent cytotoxicity by non-pharmaceutical therapies: optimal use of medical gases with antioxidant properties. Curr Pharm Des 17:2253–2263

    Article  CAS  PubMed  Google Scholar 

  13. Ito M, Hirayama M, Yamai K, Goto S, Ichihara M, Ohno K (2012) Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res 2:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Florent C, Flourie B, Leblond A, Rautureau M, Bernier JJ, Rambaud JC (1985) Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest 75:608–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsumoto A, Yamafuji M, Tachibana T, Nakabeppu Y, Noda M, Nakaya H (2013) Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep 3:3273

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kojima M, Kangawa K (2010) Ghrelin: from gene to physiological function. Results Probl Cell Differ 50:185–205

    Article  CAS  PubMed  Google Scholar 

  17. Li E, Chung H, Kim Y, Kim DH, Ryu JH, Sato T, Kojima M, Park S (2013) Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory. Endocr J 60:781–789

    Article  CAS  PubMed  Google Scholar 

  18. Kim Y, Kim S, Kim C, Sato T, Kojima M, Park S (2015) Ghrelin is required for dietary restriction-induced enhancement of hippocampal neurogenesis: lessons from ghrelin knockout mice. Endocr J 62:269–275

    Article  CAS  PubMed  Google Scholar 

  19. Li E, Kim Y, Kim S, Sato T, Kojima M, Park S (2014) Ghrelin stimulates proliferation, migration and differentiation of neural progenitors from the subventricular zone in the adult mice. Exp Neurol 252:75–84

    Article  CAS  PubMed  Google Scholar 

  20. Mccarty MF (2015) Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses 84:350–355

    Article  CAS  PubMed  Google Scholar 

  21. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, Birnbaum S, Yanagisawa M, Elmquist JK, Nestler EJ, Zigman JM (2008) The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci 11:752–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong J, Song N, Xie J, Jiang H (2009) Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. J Mol Neurosci 37:182–189

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Xu H, Jiang H, Wang J, Song N, Xie J (2010) Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. Exp Neurol 222:25–29

    Article  CAS  PubMed  Google Scholar 

  24. Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman J, Elsworth JD, Savitt JM, Dimarchi R, Tschoep M, Roth RH, Gao XB, Horvath TL (2009) Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 29:14057–14065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang H, Li LJ, Wang J, Xie JX (2008) Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 212:532–537

    Article  CAS  PubMed  Google Scholar 

  26. Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Lee D, Chung H, Oh MS, Lee KT, Park S (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15:332–347

    Article  CAS  PubMed  Google Scholar 

  27. Noda M, Ohsawa I, Ito M, Ohno K (2014) Beneficial effects of hydrogen in the CNS and a new brain-stomach interaction. Eur J Neurodegener Dis 3:25–34

    Google Scholar 

  28. Guan XM, Yu H, Palyha OC, Mckee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van Der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29

    Article  CAS  PubMed  Google Scholar 

  29. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S (2008) UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454:846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D, Chung H, Oh MS, Lee KT, Park S (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15:332–347

    Article  CAS  PubMed  Google Scholar 

  32. Berthoud HR (2008) Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 20(Suppl 1):64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Article  CAS  PubMed  Google Scholar 

  34. Iwasaki Y, Yada T (2012) Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role. Neuropeptides 46:291–297

    Article  CAS  PubMed  Google Scholar 

  35. Kojima M, Kangawa K (2010) Ghrelin: more than endogenous growth hormone secretagogue. Ann N Y Acad Sci 1200:140–148

    Article  CAS  PubMed  Google Scholar 

  36. Iwasaki Y, Maejima Y, Suyama S, Yoshida M, Arai T, Katsurada K, Kumari P, Nakabayashi H, Kakei M, Yada T (2015) Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity. Am J Physiol Regul Integr Comp Physiol 308:R360–R369

    Article  CAS  PubMed  Google Scholar 

  37. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M (2005) The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146:2369–2375

    Article  CAS  PubMed  Google Scholar 

  38. Kajitani K, Nomaru H, Ifuku M, Yutsudo N, Dan Y, Miura T, Tsuchimoto D, Sakumi K, Kadoya T, Horie H, Poirier F, Noda M, Nakabeppu Y (2009) Galectin-1 promotes basal and kainate-induced proliferation of neural progenitors in the dentate gyrus of adult mouse hippocampus. Cell Death Differ 16:417–427

    Article  CAS  PubMed  Google Scholar 

  39. Sato T, Ida T, Nakamura Y, Shiimura Y, Kangawa K, Kojima M (2014) Physiological roles of ghrelin on obesity. Obes Res Clin Pract 8:e405–413.

    Article  PubMed  Google Scholar 

  40. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120:337–345

    Article  CAS  PubMed  Google Scholar 

  41. Erlanson-Albertsson C, Lindqvist A (2008) Vagotomy and accompanying pyloroplasty down-regulates ghrelin mRNA but does not affect ghrelin secretion. Regul Pept 151:14–18

    Article  CAS  PubMed  Google Scholar 

  42. Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S (2016) Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 6:18971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin Y, Ohkawara B, Ito M, Misawa N, Miyamoto K, Takegami Y, Masuda A, Toyokuni S, Ohno K (2016) Molecular hydrogen suppresses activated Wnt/beta-catenin signaling. Sci Rep 6:31986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Golenser J, Frankenburg S, Ehrenfreund T, Domb AJ (1999) Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother 43:2209–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD (2012) Identification of ghrelin receptor blocker, D-[Lys3] GHRP-6 as a CXCR4 receptor antagonist. Int J Biol Sci 8:108–117

    Article  CAS  PubMed  Google Scholar 

  46. Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD (2012) The GHS-R blocker D-[Lys3] GHRP-6 serves as CCR5 chemokine receptor antagonist. Int J Med Sci 9:51–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. David A. Brown (UCL, UK) for reading the manuscript and Prof. Fusao Kato (Jikei University, Japan) for providing useful comments. We thank Prof. Masayasu Kojima and Dr. Takahiro Sato (Kurume University, Japan) for supplying us ghrelin-KO mice. We also thank Miss Megumi Yamafuji (Graduate School of Pharmaceutical Science, Kyushu University, Japan), Dr. Hiroko Nomaru (Medical Institute of Bioregulation, Kyushu University, Japan) for helping some of the experiments. This work was partly supported by Laboratory for Technical Supports Medical Institute of Bioregulation and the Research Support Center, Graduate School of Medical Sciences, Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mami Noda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshii, Y., Inoue, T., Uemura, Y. et al. Complexity of Stomach–Brain Interaction Induced by Molecular Hydrogen in Parkinson’s Disease Model Mice. Neurochem Res 42, 2658–2665 (2017). https://doi.org/10.1007/s11064-017-2281-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2281-1

Keywords

Navigation