Neurochemical Research

, Volume 42, Issue 9, pp 2658–2665 | Cite as

Complexity of Stomach–Brain Interaction Induced by Molecular Hydrogen in Parkinson’s Disease Model Mice

  • Yusuke Yoshii
  • Taikai Inoue
  • Yuya Uemura
  • Yusaku Iwasaki
  • Toshihiko Yada
  • Yusaku Nakabeppu
  • Mami Noda
Original Paper

Abstract

Molecular hydrogen (H2), as a new medical gas, has protective effects in neurological disorders including Parkinson’s disease (PD). In our previous report, the neuroprotective effect of drinking water with saturated H2 (H2 water) in PD mice might be due to stomach–brain interaction via release of gastric hormone, ghrelin. In the present study, we assessed the effect of H2-induced ghrelin more precisely. To confirm the contribution of ghrelin in H2 water-drinking PD model mice, ghrelin-knock out (KO) mice were used. Despite the speculation, the effect of H2 water was still observed in ghrelin-KO PD model mice. To further check the involvement of ghrelin, possible contribution of ghrelin-induced vagal afferent effect was tested by performing subdiaphragmatic vagotomy before treating with H2 water and administration of MPTP (1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine). The protective effect of H2 water was still observed in the vagotomized mice in substantia nigra, suggesting that stimulation of vagal afferent nerves is not involved in H2-induced neuroprotection. Other neuroprotective substitutes in ghrelin-KO mice were speculated because H2-induced neuroprotection was not cancelled by ghrelin receptor antagonist, D-Lys3 GHRP-6, in ghrelin-KO PD model mice, unlike in wild-type PD model mice. Our results indicate that ghrelin may not be the only factor for H2-induced neuroprotection and other factors can substitute the role of ghrelin when ghrelin is absent, raising intriguing options of research for H2-responsive factors.

Keywords

Molecular hydrogen Parkinson’s disease Ghrelin Vagal afferents Ghrelin-knock out mice 

References

  1. 1.
    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694CrossRefPubMedGoogle Scholar
  2. 2.
    Noda M, Fujita K, Hamner MA, Yamafuji M, Akimoto N, Kido MA, Tanaka Y, Nakabeppu Y, Ransom BR (2012) Molecular hydrogen protects against central nervous system white matter ischemic injury. SfN 42nd annual meeting;660.14Google Scholar
  3. 3.
    Ohta S (2014) Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 144:1–11CrossRefPubMedGoogle Scholar
  4. 4.
    Ohta S (2011) Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr Pharm Des 17:2241–2252CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Noda M, Fujita K, Ohsawa I, Ito M, Ohno K. (2014) Multiple effects of molecular hydrogen and its distinct mechanism. J Neurol Disord 2:6Google Scholar
  6. 6.
    Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M, Sakumi K, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ 13:551–563CrossRefPubMedGoogle Scholar
  7. 7.
    Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194CrossRefPubMedGoogle Scholar
  8. 8.
    Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109CrossRefPubMedGoogle Scholar
  9. 9.
    Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M (2009) Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS ONE 4:e7247CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fu Y, Ito M, Fujita Y, Ichihara M, Masuda A, Suzuki Y, Maesawa S, Kajita Y, Hirayama M, Ohsawa I, Ohta S, Ohno K (2009) Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett 453:81–85CrossRefPubMedGoogle Scholar
  11. 11.
    Fujita K, Nakabeppu Y, Noda M (2011) Therapeutic effects of hydrogen in animal models of Parkinson’s disease. Parkinsons Dis 2011:307875PubMedPubMedCentralGoogle Scholar
  12. 12.
    Noda M, Fujita K, Lee CH, Yoshioka T (2011) The principle and the potential approach to ROS-dependent cytotoxicity by non-pharmaceutical therapies: optimal use of medical gases with antioxidant properties. Curr Pharm Des 17:2253–2263CrossRefPubMedGoogle Scholar
  13. 13.
    Ito M, Hirayama M, Yamai K, Goto S, Ichihara M, Ohno K (2012) Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res 2:15CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Florent C, Flourie B, Leblond A, Rautureau M, Bernier JJ, Rambaud JC (1985) Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest 75:608–613CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Matsumoto A, Yamafuji M, Tachibana T, Nakabeppu Y, Noda M, Nakaya H (2013) Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep 3:3273CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kojima M, Kangawa K (2010) Ghrelin: from gene to physiological function. Results Probl Cell Differ 50:185–205CrossRefPubMedGoogle Scholar
  17. 17.
    Li E, Chung H, Kim Y, Kim DH, Ryu JH, Sato T, Kojima M, Park S (2013) Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory. Endocr J 60:781–789CrossRefPubMedGoogle Scholar
  18. 18.
    Kim Y, Kim S, Kim C, Sato T, Kojima M, Park S (2015) Ghrelin is required for dietary restriction-induced enhancement of hippocampal neurogenesis: lessons from ghrelin knockout mice. Endocr J 62:269–275CrossRefPubMedGoogle Scholar
  19. 19.
    Li E, Kim Y, Kim S, Sato T, Kojima M, Park S (2014) Ghrelin stimulates proliferation, migration and differentiation of neural progenitors from the subventricular zone in the adult mice. Exp Neurol 252:75–84CrossRefPubMedGoogle Scholar
  20. 20.
    Mccarty MF (2015) Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses 84:350–355CrossRefPubMedGoogle Scholar
  21. 21.
    Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, Birnbaum S, Yanagisawa M, Elmquist JK, Nestler EJ, Zigman JM (2008) The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci 11:752–753CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dong J, Song N, Xie J, Jiang H (2009) Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. J Mol Neurosci 37:182–189CrossRefPubMedGoogle Scholar
  23. 23.
    Liu L, Xu H, Jiang H, Wang J, Song N, Xie J (2010) Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. Exp Neurol 222:25–29CrossRefPubMedGoogle Scholar
  24. 24.
    Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman J, Elsworth JD, Savitt JM, Dimarchi R, Tschoep M, Roth RH, Gao XB, Horvath TL (2009) Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 29:14057–14065CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang H, Li LJ, Wang J, Xie JX (2008) Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 212:532–537CrossRefPubMedGoogle Scholar
  26. 26.
    Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Lee D, Chung H, Oh MS, Lee KT, Park S (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15:332–347CrossRefPubMedGoogle Scholar
  27. 27.
    Noda M, Ohsawa I, Ito M, Ohno K (2014) Beneficial effects of hydrogen in the CNS and a new brain-stomach interaction. Eur J Neurodegener Dis 3:25–34Google Scholar
  28. 28.
    Guan XM, Yu H, Palyha OC, Mckee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van Der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29CrossRefPubMedGoogle Scholar
  29. 29.
    Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S (2008) UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454:846–851CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D, Chung H, Oh MS, Lee KT, Park S (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15:332–347CrossRefPubMedGoogle Scholar
  32. 32.
    Berthoud HR (2008) Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 20(Suppl 1):64–72CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128CrossRefPubMedGoogle Scholar
  34. 34.
    Iwasaki Y, Yada T (2012) Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role. Neuropeptides 46:291–297CrossRefPubMedGoogle Scholar
  35. 35.
    Kojima M, Kangawa K (2010) Ghrelin: more than endogenous growth hormone secretagogue. Ann N Y Acad Sci 1200:140–148CrossRefPubMedGoogle Scholar
  36. 36.
    Iwasaki Y, Maejima Y, Suyama S, Yoshida M, Arai T, Katsurada K, Kumari P, Nakabayashi H, Kakei M, Yada T (2015) Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity. Am J Physiol Regul Integr Comp Physiol 308:R360–R369CrossRefPubMedGoogle Scholar
  37. 37.
    Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M (2005) The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146:2369–2375CrossRefPubMedGoogle Scholar
  38. 38.
    Kajitani K, Nomaru H, Ifuku M, Yutsudo N, Dan Y, Miura T, Tsuchimoto D, Sakumi K, Kadoya T, Horie H, Poirier F, Noda M, Nakabeppu Y (2009) Galectin-1 promotes basal and kainate-induced proliferation of neural progenitors in the dentate gyrus of adult mouse hippocampus. Cell Death Differ 16:417–427CrossRefPubMedGoogle Scholar
  39. 39.
    Sato T, Ida T, Nakamura Y, Shiimura Y, Kangawa K, Kojima M (2014) Physiological roles of ghrelin on obesity. Obes Res Clin Pract 8:e405–413.CrossRefPubMedGoogle Scholar
  40. 40.
    Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120:337–345CrossRefPubMedGoogle Scholar
  41. 41.
    Erlanson-Albertsson C, Lindqvist A (2008) Vagotomy and accompanying pyloroplasty down-regulates ghrelin mRNA but does not affect ghrelin secretion. Regul Pept 151:14–18CrossRefPubMedGoogle Scholar
  42. 42.
    Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S (2016) Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 6:18971CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lin Y, Ohkawara B, Ito M, Misawa N, Miyamoto K, Takegami Y, Masuda A, Toyokuni S, Ohno K (2016) Molecular hydrogen suppresses activated Wnt/beta-catenin signaling. Sci Rep 6:31986CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Golenser J, Frankenburg S, Ehrenfreund T, Domb AJ (1999) Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother 43:2209–2214PubMedPubMedCentralGoogle Scholar
  45. 45.
    Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD (2012) Identification of ghrelin receptor blocker, D-[Lys3] GHRP-6 as a CXCR4 receptor antagonist. Int J Biol Sci 8:108–117CrossRefPubMedGoogle Scholar
  46. 46.
    Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD (2012) The GHS-R blocker D-[Lys3] GHRP-6 serves as CCR5 chemokine receptor antagonist. Int J Med Sci 9:51–58CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yusuke Yoshii
    • 1
  • Taikai Inoue
    • 1
  • Yuya Uemura
    • 1
  • Yusaku Iwasaki
    • 2
  • Toshihiko Yada
    • 2
  • Yusaku Nakabeppu
    • 3
  • Mami Noda
    • 1
  1. 1.Laboratory of Pathophysiology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  2. 2.Division of Integrative Physiology, Department of PhysiologyJichi Medical University School of MedicineShimotsukeJapan
  3. 3.Division of Neurofunctional Genomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan

Personalised recommendations