Skip to main content

Advertisement

Log in

Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson’s disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado–Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53:1791–1806

    Article  CAS  PubMed  Google Scholar 

  2. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  3. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  CAS  PubMed  Google Scholar 

  4. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  5. Bendor JT, Logan TP, Edwards RH (2013) The function of alpha-synuclein. Neuron 79:1044–1066

    Article  CAS  PubMed  Google Scholar 

  6. Puschmann A, Bhidayasiri R, Weiner WJ (2012) Synucleinopathies from bench to bedside. Parkinsonism Relat Disord 18(Suppl 1):S24–S27

    Article  PubMed  Google Scholar 

  7. Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D, Bornemann A, Riess O, Ross CA, Rott R, Engelender S (2004) Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc Natl Acad Sci USA 101:5500–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol 152:367–372

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98:12245–12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274:25481–25489

    Article  CAS  PubMed  Google Scholar 

  11. Herrera F, Outeiro TF (2012) alpha-Synuclein modifies huntingtin aggregation in living cells. FEBS Lett 586:7–12

    Article  CAS  PubMed  Google Scholar 

  12. Bettencourt C, Santos C, Coutinho P, Rizzu P, Vasconcelos J, Kay T, Cymbron T, Raposo M, Heutink P, Lima M (2011) Parkinsonian phenotype in Machado–Joseph disease (MJD/SCA3): a two-case report. BMC Neurol 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buhmann C, Bussopulos A, Oechsner M (2003) Dopaminergic response in Parkinsonian phenotype of Machado–Joseph disease. Mov Disord 18:219–221

    Article  PubMed  Google Scholar 

  14. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222

    Article  CAS  PubMed  Google Scholar 

  15. Gegg ME, Schapira AH (2011) PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: implications for Parkinson disease pathogenesis. Autophagy 7:243–245

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martins-Branco D, Esteves AR, Santos D, Arduino DM, Swerdlow RH, Oliveira CR, Januario C, Cardoso SM (2012) Ubiquitin proteasome system in Parkinson’s disease: a keeper or a witness? Exp Neurol 238:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laco MN, Oliveira CR, Paulson HL, Rego AC (2012) Compromised mitochondrial complex II in models of Machado–Joseph disease. Biochim Biophys Acta 1822:139–149

    Article  CAS  PubMed  Google Scholar 

  18. Evert BO, Wullner U, Schulz JB, Weller M, Groscurth P, Trottier Y, Brice A, Klockgether T (1999) High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Hum Mol Genet 8:1169–1176

    Article  CAS  PubMed  Google Scholar 

  19. Wszolek ZK, Pfeiffer RF, Tsuboi Y, Uitti RJ, McComb RD, Stoessl AJ, Strongosky AJ, Zimprich A, Muller-Myhsok B, Farrer MJ, Gasser T, Calne DB, Dickson DW (2004) Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 62:1619–1622

    Article  CAS  PubMed  Google Scholar 

  20. Lattante S, Millecamps S, Stevanin G, Rivaud-Pechoux S, Moigneu C, Camuzat A, Da BS, Mundwiller E, Couarch P, Salachas F, Hannequin D, Meininger V, Pasquier F, Seilhean D, Couratier P, Danel-Brunaud V, Bonnet AM, Tranchant C, LeGuern E, Brice A, Le Ber I, Kabashi E (2014) Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology 83:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, Pedroso de Lima MC, Hantraye P, Pereira de AL, Deglon N (2008) Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado–Joseph disease. PLoS ONE 3:e3341

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perfeito R, Lazaro DF, Outeiro TF, Rego AC (2014) Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 62:51–59

    Article  CAS  PubMed  Google Scholar 

  23. Vekrellis K, Xilouri M, Emmanouilidou E, Stefanis L (2009) Inducible over-expression of wild type alpha-synuclein in human neuronal cells leads to caspase-dependent non-apoptotic death. J Neurochem 109:1348–1362

    Article  CAS  PubMed  Google Scholar 

  24. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  25. Pacheco LS, da Silveira AF, Trott A, Houenou LJ, Algarve TD, Bello C, Lenz AF, Manica-Cattani MF, da Cruz IB (2013) Association between Machado–Joseph disease and oxidative stress biomarkers. Mutat Res 757:99–103

    Article  CAS  PubMed  Google Scholar 

  26. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6

    Article  CAS  PubMed  Google Scholar 

  27. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron(III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  CAS  PubMed  Google Scholar 

  28. Rhodes SL, Ritz B (2008) Genetics of iron regulation and the possible role of iron in Parkinson’s disease. Neurobiol Dis 32:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143

    Article  CAS  PubMed  Google Scholar 

  30. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  CAS  PubMed  Google Scholar 

  31. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65:1272–1284

    Article  CAS  PubMed  Google Scholar 

  32. He Q, Song N, Xu H, Wang R, Xie J, Jiang H (2011) Alpha-synuclein aggregation is involved in the toxicity induced by ferric iron to SK-N-SH neuroblastoma cells. J Neural Transm 118:397–406

    Article  CAS  PubMed  Google Scholar 

  33. Mandel S, Maor G, Youdim MB (2004) Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate. J Mol Neurosci 24:401–416

    Article  CAS  PubMed  Google Scholar 

  34. Rub U, de Vos RA, Schultz C, Brunt ER, Paulson H, Braak H (2002) Spinocerebellar ataxia type 3 (Machado–Joseph disease): severe destruction of the lateral reticular nucleus. Brain 125:2115–2124

    Article  CAS  PubMed  Google Scholar 

  35. Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL (2008) The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 283:26436–26443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laco MN, Cortes L, Travis SM, Paulson HL, Rego AC (2012) Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3. PLoS ONE 7:e43563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bevivino AE, Loll PJ (2001) An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta -fibrils. Proc Natl Acad Sci USA 98:11955–11960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu YC, Kuo CL, Cheng WL, Liu CS, Hsieh M (2009) Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado–Joseph disease. J Neurosci Res 87:1884–1891

    Article  CAS  PubMed  Google Scholar 

  39. Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U, Evert BO (2011) FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 20:2928–2941

    Article  CAS  PubMed  Google Scholar 

  40. Fukui H, Moraes CT (2007) Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum Mol Genet 16:783–797

    Article  CAS  PubMed  Google Scholar 

  41. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420

    Article  CAS  PubMed  Google Scholar 

  42. Chou AH, Yeh TH, Kuo YL, Kao YC, Jou MJ, Hsu CY, Tsai SR, Kakizuka A, Wang HL (2006) Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis 21:333–345

    Article  CAS  PubMed  Google Scholar 

  43. Shavali S, Brown-Borg HM, Ebadi M, Porter J (2008) Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett 439:125–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, Bonini NM (2005) Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell 18:37–48

    Article  CAS  PubMed  Google Scholar 

  45. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    Article  CAS  PubMed  Google Scholar 

  46. Matos CA, de Macedo-Ribeiro S, Carvalho AL (2011) Polyglutamine diseases: the special case of ataxin-3 and Machado–Joseph disease. Prog Neurobiol 95:26–48

    Article  CAS  PubMed  Google Scholar 

  47. Hubener J, Riess O (2010) Polyglutamine-induced neurodegeneration in SCA3 is not mitigated by non-expanded ataxin-3: conclusions from double-transgenic mouse models. Neurobiol Dis 38:116–124

    Article  PubMed  Google Scholar 

  48. Alves S, Nascimento-Ferreira I, Dufour N, Hassig R, Auregan G, Nobrega C, Brouillet E, Hantraye P, Pedroso de Lima MC, Deglon N, de Almeida LP (2010) Silencing ataxin-3 mitigates degeneration in a rat model of Machado–Joseph disease: no role for wild-type ataxin-3? Hum Mol Genet 19:2380–2394

    Article  CAS  PubMed  Google Scholar 

  49. Fujigasaki H, Uchihara T, Takahashi J, Matsushita H, Nakamura A, Koyano S, Iwabuchi K, Hirai S, Mizusawa H (2001) Preferential recruitment of ataxin-3 independent of expanded polyglutamine: an immunohistochemical study on Marinesco bodies. J Neurol Neurosurg Psychiatry 71:518–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alves S, Regulier E, Nascimento-Ferreira I, Hassig R, Dufour N, Koeppen A, Carvalho AL, Simoes S, de Lima MC, Brouillet E, Gould VC, Deglon N, de Almeida LP (2008) Striatal and nigral pathology in a lentiviral rat model of Machado–Joseph disease. Hum Mol Genet 17:2071–2083

    Article  CAS  PubMed  Google Scholar 

  51. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FEDER funds through the Operational Programme Competitiveness Factors – COMPETE and national funds by FCT – Foundation for Science and Technology, under the project PTDC/SAU-NEU/101928/2008 and strategic projects UID/NEU/04539/2013 and PEst-C/SAU/LA0001/2013–2014. ML was a recipient of FCT post-doctoral fellowship reference SFRH/BPD/91811/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cristina Rego.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noronha, C., Perfeito, R., Laço, M. et al. Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein. Neurochem Res 42, 1430–1437 (2017). https://doi.org/10.1007/s11064-017-2199-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2199-7

Keywords

Navigation