Skip to main content

Advertisement

Log in

Resistance Exercise Reduces Seizure Occurrence, Attenuates Memory Deficits and Restores BDNF Signaling in Rats with Chronic Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is a disease characterized by recurrent, unprovoked seizures. Cognitive impairment is an important comorbidity of chronic epilepsy. Human and animal model studies of epilepsy have shown that aerobic exercise induces beneficial structural and functional changes and reduces the number of seizures. However, little is yet understood about the effects of resistance exercise on epilepsy. We evaluated the effects of a resistance exercise program on the number of seizures, long-term memory and expression/activation of signaling proteins in rats with epilepsy. The number of seizures was quantified by video-monitoring and long-term memory was assessed by an inhibitory avoidance test. Using western blotting, multiplex and enzyme-linked immunosorbent assays, we determined the effects of a 4-week resistance exercise program on IGF-1 and BDNF levels and ERK, CREB, mTOR activation in the hippocampus of rats with epilepsy. Rats with epilepsy submitted to resistance exercise showed a decrease in the number of seizures compared to non-exercised epileptic rats. Memory deficits were attenuated by resistance exercise. Rats with epilepsy showed an increase in IGF-1 levels which were restored to control levels by resistance exercise. BDNF levels and ERK and mTOR activation were decreased in rats with epilepsy and resistance exercise restored these to control levels. In conclusion, resistance exercise reduced seizure occurrence and mitigated memory deficits in rats with epilepsy. These resistance exercise-induced beneficial effects can be related to changes in IGF-1 and BDNF levels and its signaling protein activation. Our findings indicate that the resistance exercise might be included as complementary therapeutic strategy for epilepsy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J Jr, Forsgren L, French JA, Glynn M, Hesdorffer DC, Lee BI, Mathern GW, Moshe SL, Perucca E, Scheffer IE, Tomson T, Watanabe M, Wiebe S (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4):475–482

    Article  PubMed  Google Scholar 

  2. Bell B, Lin JJ, Seidenberg M, Hermann B (2011) The neurobiology of cognitive disorders in temporal lobe epilepsy. Nat. Rev Neurol 7(3):154–164

    Article  Google Scholar 

  3. Meador KJ (2002) Cognitive outcomes and predictive factors in epilepsy. Neurology 58(8 Suppl 5):S21–S26

    Article  PubMed  Google Scholar 

  4. Helmstaedter C, Kockelmann E (2006) Cognitive outcomes in patients with chronic temporal lobe epilepsy. Epilepsia 47(Suppl 2):96–98

    Article  PubMed  Google Scholar 

  5. Lopim GM, Vannucci Campos D, Gomes da Silva S, de Almeida AA, Lent R, Cavalheiro EA, Arida RM (2016) Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Res 1634:179–186

    Article  CAS  PubMed  Google Scholar 

  6. Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1(3):173–181

    Article  PubMed  Google Scholar 

  7. Nakken KO (1999) Physical exercise in outpatients with epilepsy. Epilepsia 40(5):643–651

    Article  CAS  PubMed  Google Scholar 

  8. Nakken KO, Bjorholt PG, Johannessen SI, Loyning T, Lind E (1990) Effect of physical training on aerobic capacity, seizure occurrence, and serum level of antiepileptic drugs in adults with epilepsy. Epilepsia 31(1):88–94

    Article  CAS  PubMed  Google Scholar 

  9. Eriksen HR, Ellertsen B, Gronningsaeter H, Nakken KO, Loyning Y, Ursin H (1994) Physical exercise in women with intractable epilepsy. Epilepsia 35(6):1256–1264

    Article  CAS  PubMed  Google Scholar 

  10. McAuley JW, Long L, Heise J, Kirby T, Buckworth J, Pitt C, Lehman KJ, Moore JL, Reeves AL (2001) A prospective evaluation of the effects of a 12-week outpatient exercise program on clinical and behavioral outcomes in patients with epilepsy. Epilepsy Behav 2(6):592–600

    Article  PubMed  Google Scholar 

  11. Arida RM, Scorza FA, dos Santos NF, Peres CA, Cavalheiro EA (1999) Effect of physical exercise on seizure occurrence in a model of temporal lobe epilepsy in rats. Epilepsy Res 37(1):45–52

    Article  CAS  PubMed  Google Scholar 

  12. Arida RM, Sanabria ER, da Silva AC, Faria LC, Scorza FA, Cavalheiro EA (2004) Physical training reverts hippocampal electrophysiological changes in rats submitted to the pilocarpine model of epilepsy. Physiol Behav 83(1):165–171

    Article  CAS  PubMed  Google Scholar 

  13. Arida RM, Scorza CA, Scorza FA, Gomes da Silva S, da Graca Naffah-Mazzacoratti M, Cavalheiro EA (2007) Effects of different types of physical exercise on the staining of parvalbumin-positive neurons in the hippocampal formation of rats with epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 31(4):814–822

    Article  CAS  PubMed  Google Scholar 

  14. Lim BV, Shin MS, Lee JM, Seo JH (2015) Treadmill exercise prevents GABAergic neuronal loss with suppression of neuronal activation in the pilocarpine-induced epileptic rats. J Exerc Rehabil 11(2):80–86

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sartori CR, Pelágio FC, Teixeira SA, Valentinuzzi VS, Nascimento AL, Rogério F, Muscará MN, Ferrari EA, Langone F (2009) Effects of voluntary running on spatial memory and mature brain-derived neurotrophic factor expression in mice hippocampus after status epilepticus. Behav Brain Res 203(2):165–172

    Article  CAS  PubMed  Google Scholar 

  16. Gomes FG, Gomes Da Silva S, Cavalheiro EA, Arida RM (2014) Beneficial influence of physical exercise following status epilepticus in the immature brain of rats. Neuroscience 274:69–81

    Article  CAS  PubMed  Google Scholar 

  17. Lee M, Carroll TJ (2007) Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med 37(1):1–14

    Article  PubMed  Google Scholar 

  18. Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679

    Article  PubMed  Google Scholar 

  19. Weinberg L, Hasni A, Shinohara M, Duarte A (2014) A single bout of resistance exercise can enhance episodic memory performance. Acta Psychol (Amst) 153:13–19

    Article  Google Scholar 

  20. Peixinho-Pena LF, Fernandes J, de Almeida AA, Novaes Gomes FG, Cassilhas R, Venancio DP, de Mello MT, Scorza FA, Cavalheiro EA, Arida RM (2012) A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav 25(3):323–328

    Article  PubMed  Google Scholar 

  21. Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39(8):1401–1407

    Article  PubMed  Google Scholar 

  22. Chang YK, Etnier JL (2009) Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport Exercise 10(1):19–24

    Article  Google Scholar 

  23. Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC (2010) Resistance training and executive functions: a 12-month randomized controlled trial. Arch Intern Med 170(2):170–178

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tsai CL, Wang CH, Pan CY, Chen FC (2015) The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front. Behav Neurosci 9:23

    Google Scholar 

  25. Weier AT, Pearce AJ, Kidgell DJ (2012) Strength training reduces intracortical inhibition. Acta Physiol (Oxf) 206(2):109–119

    Article  CAS  Google Scholar 

  26. Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317

    Article  CAS  PubMed  Google Scholar 

  27. Cassilhas RC, Lee KS, Venancio DP, Oliveira MG, Tufik S, de Mello MT (2012) Resistance exercise improves hippocampus-dependent memory. Braz J Med Biol Res 45(12):1215–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fernandes J, Soares JCK, do Amaral Baliego LGZ, Arida RM (2016) A single bout of resistance exercise improves memory consolidation and increases the expression of synaptic proteins in the hippocampus. Hippocampus. doi: 10.1002/hipo.22590

    PubMed  Google Scholar 

  29. Novaes Gomes FG, Fernandes J, Vannucci Campos D, Cassilhas RC, Viana GM, D’Almeida V, de Moraes Rego MK, Buainain PI, Cavalheiro EA, Arida RM (2014) The beneficial effects of strength exercise on hippocampal cell proliferation and apoptotic signaling is impaired by anabolic androgenic steroids. Psychoneuroendocrinology 50:106–117

    Article  CAS  PubMed  Google Scholar 

  30. Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20(8):2926–2933

    CAS  PubMed  Google Scholar 

  31. Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21(15):5678–5684

    CAS  PubMed  Google Scholar 

  32. Trejo JL, Llorens-Martin MV, Torres-Aleman I (2008) The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 37(2):402–411

    Article  CAS  PubMed  Google Scholar 

  33. Rotwein P (1991) Structure, evolution, expression and regulation of insulin-like growth factors I and II. Growth Factors 5(1):3–18

    Article  CAS  PubMed  Google Scholar 

  34. Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31(2–3):120–125

    Article  CAS  PubMed  Google Scholar 

  35. D’Ercole AJ, Ye P, O’Kusky JR (2002) Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36(2–3):209–220

    Article  PubMed  Google Scholar 

  36. Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ (2002) Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 22(14):6041–6051

    CAS  PubMed  Google Scholar 

  37. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22(3):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665

    Article  CAS  PubMed  Google Scholar 

  39. Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D (1998) Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121(1):19–26

    Article  CAS  PubMed  Google Scholar 

  40. Zheng WH, Kar S, Quirion R (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 62(2):225–233

    Article  CAS  PubMed  Google Scholar 

  41. Zheng WH, Quirion R (2004) Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem 89(4):844–852

    Article  CAS  PubMed  Google Scholar 

  42. Cheng CM, Cohen M, Tseng V, Bondy CA (2001) Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res 64(4):341–347

    Article  CAS  PubMed  Google Scholar 

  43. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10(3):381–391

    Article  CAS  PubMed  Google Scholar 

  44. Parrizas M, LeRoith D (1997) Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology 138(3):1355–1358

    Article  CAS  PubMed  Google Scholar 

  45. Parrizas M, Saltiel AR, LeRoith D (1997) Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem 272(1):154–161

    Article  CAS  PubMed  Google Scholar 

  46. Okereke O, Kang JH, Ma J, Hankinson SE, Pollak MN, Grodstein F (2007) Plasma IGF-I levels and cognitive performance in older women. Neurobiol Aging 28(1):135–142

    Article  CAS  PubMed  Google Scholar 

  47. Jiang G, Wang W, Cao Q, Gu J, Mi X, Wang K, Chen G, Wang X (2015) Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain. Clin Sci (Lond) 129(12):1047–1060

    Article  CAS  Google Scholar 

  48. Liu G, Gu B, He XP, Joshi RB, Wackerle HD, Rodriguiz RM, Wetsel WC, McNamara JO (2013) Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 79(1):31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu B, Huang YZ, He XP, Joshi RB, Jang W, McNamara JO (2015) A peptide uncoupling BDNF receptor TrkB from phospholipase Cγ1 prevents epilepsy induced by status epilepticus. Neuron 88(3):484–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. LaFrance WC Jr, Leaver K, Stopa EG, Papandonatos GD, Blum AS (2010) Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures. Neurology 75(14):1285–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walsh JJ, Scribbans TD, Bentley RF, Kellawan JM, Gurd B, Tschakovsky ME (2016) Neurotrophic growth factor responses to lower body resistance training in older adults. Appl Physiol Nutr Metab 41(3):315–323

    Article  CAS  PubMed  Google Scholar 

  52. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9(3):315–335

    Article  CAS  PubMed  Google Scholar 

  53. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  54. Lowenstein DH, Bleck T, Macdonald RL (1999) It’s time to revise the definition of status epilepticus. Epilepsia 40(1):120–122

    Article  CAS  PubMed  Google Scholar 

  55. Moreira KM, Hipolide DC, Nobrega JN, Bueno OF, Tufik S, Oliveira MG (2003) Deficits in avoidance responding after paradoxical sleep deprivation are not associated with altered [3H]pirenzepine binding to M1 muscarinic receptors in rat brain. Brain Res 977(1):31–37

    Article  CAS  PubMed  Google Scholar 

  56. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  57. Field A (2009) Testes não paramétricos. In: Descobrindo a estatística usando o SPSS, 2ª edn. Artmed, Porto Alegre, pp 474–513

  58. Smith DB, Craft BR, Collins J, Mattson RH, Cramer JA (1986) Behavioral characteristics of epilepsy patients compared with normal controls. Epilepsia 27(6):760–768

    Article  CAS  PubMed  Google Scholar 

  59. Bassil F, Fernagut PO, Bezard E, Meissner WG (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1–18

    Article  CAS  PubMed  Google Scholar 

  60. Borst SE, De Hoyos DV, Garzarella L, Vincent K, Pollock BH, Lowenthal DT, Pollock ML (2001) Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med Sci Sports Exerc 33(4):648–653

    Article  CAS  PubMed  Google Scholar 

  61. Giovannini MG, Lana D, Pepeu G (2015) The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 119:18–33

    Article  CAS  PubMed  Google Scholar 

  62. Walz R, Roesler R, Quevedo J, Rockenbach IC, Amaral OB, Vianna MR, Lenz G, Medina JH, Izquierdo I (1999) Dose-dependent impairment of inhibitory avoidance retention in rats by immediate post-training infusion of a mitogen-activated protein kinase kinase inhibitor into cortical structures. Behav Brain Res 105(2):219–223

    Article  CAS  PubMed  Google Scholar 

  63. Bekinschtein P, Katche C, Slipczuk LN, Igaz LM, Cammarota M, Izquierdo I, Medina JH (2007) mTOR signaling in the hippocampus is necessary for memory formation. Neurobiol Learn Mem 87(2):303–307

    Article  CAS  PubMed  Google Scholar 

  64. Lana D, Cerbai F, Di Russo J, Boscaro F, Giannetti A, Petkova-Kirova P, Pugliese AM, Giovannini MG (2013) Hippocampal long term memory: effect of the cholinergic system on local protein synthesis. Neurobiol Learn Mem 106:246–257

    Article  CAS  PubMed  Google Scholar 

  65. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7):602–609

    Article  CAS  PubMed  Google Scholar 

  66. Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17(3):473–490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; #300605/2013-07); Fundacão de Amparo à Pesquisa do Estado de São Paulo/ Programa Núcleos de Excelência (FAPESP/PRONEX; #14/00035-1; #2013/12692-4; #2011/50680-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Mario Arida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, A.A., Gomes da Silva, S., Lopim, G.M. et al. Resistance Exercise Reduces Seizure Occurrence, Attenuates Memory Deficits and Restores BDNF Signaling in Rats with Chronic Epilepsy. Neurochem Res 42, 1230–1239 (2017). https://doi.org/10.1007/s11064-016-2165-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2165-9

Keywords

Navigation