Skip to main content

Advertisement

Log in

Loss or Mislocalization of Aquaporin-4 Affects Diffusion Properties and Intermediary Metabolism in Gray Matter of Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1-13C]glucose and [1,2-13C]acetate injection with ex vivo 13C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4-13C]glutamate and [4-13C]glutamine, and percent enrichment in [4-13C]glutamate were detected in the α-syn KO mice. [1,2-13C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17(1):171–180

    CAS  PubMed  Google Scholar 

  2. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4):1543–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129(4):999–1010

    Article  CAS  PubMed  Google Scholar 

  4. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98(24):14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    Article  CAS  PubMed  Google Scholar 

  7. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14(4):265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eid T, Lee TS, Thomas MJ, Amiry-Moghaddam M, Bjørnsen LP, Spencer DD, Agre P, Ottersen OP, de Lanerolle NC (2005) Loss of perivascular aquaporin 4 may underlie deficient water and K + homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci USA 102(4):1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53(6):631–636

    Article  PubMed  Google Scholar 

  10. Alvestad S, Hammer J, Hoddevik EH, Skare Ø, Sonnewald U, Amiry-Moghaddam M, Ottersen OP (2013) Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy. Epilepsy Res 105(1–2):30–41

    Article  CAS  PubMed  Google Scholar 

  11. Hinson SR, Lennon VA, Pittock SJ (2016) Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. Handb Clin Neurol 133:377–403

    Article  PubMed  Google Scholar 

  12. Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN, Lannfelt L, Xu Y, Amiry-Moghaddam M, Ottersen OP et al (2011) Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 27(4):711–722

    CAS  PubMed  Google Scholar 

  13. Verkman AS, Wong KR (1987) Proton nuclear magnetic resonance measurement of diffusional water permeability in suspended renal proximal tubules. Biophys J 51(5):717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benga G, Matei H, Borza T, Poruţiu D, Lupşe C (1993) Comparative nuclear magnetic resonance studies on water diffusional permeability of red blood cells from mice and rats. Comp Biochem Physiol Comp Physiol 104(3):491–495

    Article  CAS  PubMed  Google Scholar 

  15. Lahajnar G, Macek P, Zupancic I (2000) Suppression of red cell diffusional water permeability by lipophilic solutes. Bioelectrochemistry 52(2):179–185

    Article  CAS  PubMed  Google Scholar 

  16. Ibata K, Takimoto S, Morisaku T, Miyawaki A, Yasui M (2011) Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy. Biophys J 101(9):2277–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aslund I, Nowacka A, Nilsson M, Topgaard D (2009) Filter-exchange PGSE NMR determination of cell membrane permeability. J Magn Reson 200(2):291–295

    Article  PubMed  Google Scholar 

  18. Meng S, Qiao M, Lin L, Del Bigio MR, Tomanek B, Tuor UI (2004) Correspondence of AQP4 expression and hypoxic-ischaemic brain oedema monitored by magnetic resonance imaging in the immature and juvenile rat. Eur J Neurosci 19(8):2261–2269

    Article  PubMed  Google Scholar 

  19. Tourdias T, Dragonu I, Fushimi Y, Deloire MS, Boiziau C, Brochet B, Moonen C, Petry KG, Dousset V (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. Neuroimage 47(2):659–666

    Article  PubMed  Google Scholar 

  20. Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A (2011) Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 31(3):819–831

    Article  CAS  PubMed  Google Scholar 

  21. Mitra PP, Sen PN, Schwartz LM (1993) Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys Rev B Condens Matter 47(14):8565–8574

    Article  CAS  PubMed  Google Scholar 

  22. Latour LL, Svoboda K, Mitra PP, Sotak CH (1994) Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci USA 91(4):1229–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Novikov DS, Fieremans E, Jensen JH, Helpern JA (2011) Random walk with barriers. Nat Phys 7(6):508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Novikov DS, Jensen JH, Helpern JA, Fieremans E (2014) Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA 111(14):5088–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burcaw LM, Fieremans E, Novikov DS (2015) Mesoscopic structure of neuronal tracts from time-dependent diffusion. Neuroimage 114:18–37

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dmytrenko L, Cicanic M, Anderova M, Vorisek I, Ottersen OP, Sykova E, Vargova L (2013) The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS One 8(7):e68044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC, Nagelhus EA, Adams ME, Froehner SC, Agre P, Ottersen OP (2003) Delayed K + clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA 100(23):13615–13620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cruz NF, Ball KK, Froehner SC, Adams ME, Dienel GA (2013) Regional registration of [6-(14)C]glucose metabolism during brain activation of α-syntrophin knockout mice. J Neurochem 125(2):247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haberg A, Qu H, Sonnewald U (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival. Neurochem Int 48(6–7):531–540

    Article  CAS  PubMed  Google Scholar 

  30. Håberg A, Sonnewald U, Hammer J, Melø T, Eloqayli H (2012) 13C NMR Spectroscopy as a Toolin Neurobiology. In: Choi IY (ed) Neural metabolism in vivo. edn. Springer

  31. Sonnewald U, Gribbestad IS, Westergaard N, Nilsen G, Unsgard G, Schousboe A, Petersen SB (1994) Nuclear magnetic resonance spectroscopy: biochemical evaluation of brain function in vivo and in vitro. Neurotoxicology 15(3):579–590

    CAS  PubMed  Google Scholar 

  32. Sonnewald U, Kondziella D (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13 C NMR spectroscopy. Nmr Biomed 16(6–7):424–429

    Article  CAS  PubMed  Google Scholar 

  33. Öz G, DiNuzzo M, Kumar A, Moheet A, Seaquist ER (2015) Revisiting Glycogen Content in the Human Brain. Neurochem Res 40(12):2473–2481

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roig ES, Magill AW, Donati G, Meyerspeer M, Xin L, Ipek O, Gruetter R (2015) A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7 T. Magn Reson Med 73(2):894–900

    Article  CAS  Google Scholar 

  35. Thrane AS, Rappold PM, Fujita T, Torres A, Bekar LK, Takano T, Peng W, Wang F, Rangroo Thrane V, Enger R et al (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2 + signaling events elicited by cerebral edema. Proc Natl Acad Sci USA 108(2):846–851

    Article  CAS  PubMed  Google Scholar 

  36. Adams ME, Kramarcy N, Krall SP, Rossi SG, Rotundo RL, Sealock R, Froehner SC (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol 150(6):1385–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parisi M, Dorr RA, Ozu M, Toriano R (2007) From membrane pores to aquaporins: 50 years measuring water fluxes. J Biol Phys 33(5–6):331–343

    Article  CAS  PubMed  Google Scholar 

  38. Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286(2):C426–C432

    Article  CAS  PubMed  Google Scholar 

  39. Verkman AS (2000) Water permeability measurement in living cells and complex tissues. J Membr Biol 173(2):73–87

    Article  CAS  PubMed  Google Scholar 

  40. Andrasko J (1976) Water diffusion permeability of human erythrocytes studied by a pulsed gradient NMR technique. Biochim Biophys Acta 428(2):304–311

    Article  CAS  PubMed  Google Scholar 

  41. Krager J (1969) Zur bestimmung der diffusion in einem zweibereichsystem mit hilfe von gepulsten feldgradienten. Ann Phys 479:1–4

    Article  Google Scholar 

  42. Yao X, Hrabetová S, Nicholson C, Manley GT (2008) Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J Neurosci 28(21):5460–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crick F (1970) Diffusion in embryogenesis. Nature 225(5231):420–422

    Article  CAS  PubMed  Google Scholar 

  44. Håberg A, Qu H, Haraldseth O, Unsgård G, Sonnewald U (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13 C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18(11):1223–1232

    Article  PubMed  Google Scholar 

  45. Hassel B, Bachelard H, Jones P, Fonnum F, Sonnewald U (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J Cereb Blood Flow Metab 17(11):1230–1238

    Article  CAS  PubMed  Google Scholar 

  46. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M et al (2015) Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qu H, Haberg A, Haraldseth O, Unsgard G, Sonnewald U (2000) (13)C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci 22(5–6):429–436

    Article  CAS  PubMed  Google Scholar 

  48. Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgård G, Petersen SB (1993) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22(1):19–29

    Article  CAS  PubMed  Google Scholar 

  49. Nehlig A, Coles JA (2007) Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 55(12):1238–1250

    Article  PubMed  Google Scholar 

  50. Qu H, Håberg A, Haraldseth O, Unsgård G, Sonnewald U (2000) (13)C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci 22(5–6):429–436

    Article  CAS  PubMed  Google Scholar 

  51. Ottersen OP (1989) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2(1):57–66

    CAS  PubMed  Google Scholar 

  52. Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22(5):717–724

    Article  CAS  PubMed  Google Scholar 

  53. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41(5):1484–1487

    Article  CAS  PubMed  Google Scholar 

  54. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310

    Article  CAS  PubMed  Google Scholar 

  55. Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46(3):519–534

    Article  CAS  PubMed  Google Scholar 

  56. Kvamme E, Torgner IA, Roberg B (2001) Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66(5):951–958

    Article  CAS  PubMed  Google Scholar 

  57. Taylor A, McLean M, Morris P, Bachelard H (1996) Approaches to studies on neuronal/glial relationships by 13 C-MRS analysis. Dev Neurosci 18(5–6):434–442

    CAS  PubMed  Google Scholar 

  58. Sullivan GM, Feinn R (2012) Using Effect Size-or Why the P Value Is Not Enough. J Grad Med Educ 4(3):279–282

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nilsson M, van Westen D, Ståhlberg F, Sundgren PC, Lätt J (2013) The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter. MAGMA 26(4):345–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barry PH, Diamond JM (1984) Effects of unstirred layers on membrane phenomena. Physiol Rev 64(3):763–872

    CAS  PubMed  Google Scholar 

  61. Sen P (2003) Time-dependent diffusion coefficient as a probe of the permeability of the pore wall. J Chem Phys 119(18):9871–9876

    CAS  Google Scholar 

  62. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP et al (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100(4):2106–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111(2):522–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The funding was provided by The Liaison Committee between the Central Norway Regional Health Authority and NTNU, Norwegian National Advisory Unit for functional MRI, St. Olavs hospital, Trondheim University hospital, Norway, Norges Forskningsråd (NO) (Grant No. 226696) and Research Council of Norway (Grant No. 240476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Håberg.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or other conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlin, T., Nagelhus, E.A., Brekken, C. et al. Loss or Mislocalization of Aquaporin-4 Affects Diffusion Properties and Intermediary Metabolism in Gray Matter of Mice. Neurochem Res 42, 77–91 (2017). https://doi.org/10.1007/s11064-016-2139-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2139-y

Keywords

Navigation