Skip to main content

Advertisement

Log in

Neural Signaling Metabolites May Modulate Energy Use in Hibernation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Despite an epidemic in obesity and metabolic syndrome limited means exist to effect adiposity or metabolic rate other than life style changes. Here we review evidence that neural signaling metabolites may modulate thermoregulatory pathways and offer novel means to fine tune energy use. We extend prior reviews on mechanisms that regulate thermogenesis and energy use in hibernation by focusing primarily on the neural signaling metabolites adenosine, AMP and glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Santoro N (2013) Childhood obesity and type 2 diabetes: the frightening epidemic. World J Pediatr 9:101–102

    Article  PubMed  Google Scholar 

  2. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  3. Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan M, He L, Zhuang X (2016) The emerging role of gpr50 receptor in brain. Biomed Pharmacother 78:121–128

    Article  CAS  PubMed  Google Scholar 

  5. Cubuk C, Bank JH, Herwig A (2016) The chemistry of cold: mechanisms of torpor regulation in the siberian hamster. Physiology (Bethesda) 31:51–59

    Google Scholar 

  6. van Breukelen F, Martin SL (2015) The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology (Bethesda) 30:273–281

    Google Scholar 

  7. Grabek KR, Martin SL, Hindle AG (2015) Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 185:607–627

    Article  CAS  PubMed  Google Scholar 

  8. Staples JF (2014) Metabolic suppression in mammalian hibernation: the role of mitochondria. J Exp Biol 217:2032–2036

    Article  CAS  PubMed  Google Scholar 

  9. Swoap SJ (2012) Thermoregulation: an orphan receptor finds its way in the cold. Curr Biol 22:R17–R18

    Article  CAS  PubMed  Google Scholar 

  10. Swoap SJ, Weinshenker D (2008) Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS One 3:e4038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Florant GL, Turner BM, Heller HC (1978) Temperature regulation during wakefulness, sleep, and hibernation in marmots. Am J Physiol 235:R82–R88

    CAS  PubMed  Google Scholar 

  12. Snapp BD, Heller HC (1981) Suppression of metabolism during hibernation in ground squirrels (citellus lateralis). Physiol Zool 54:2970307

    Article  Google Scholar 

  13. Levesque DL, Tattersall GJ (2010) Seasonal torpor and normothermic energy metabolism in the eastern chipmunk (Tamias striatus). J Comp Physiol B 180:279–292

    Article  PubMed  Google Scholar 

  14. Olson JM, Jinka TR, Larson LK, Danielson JJ, Moore JT, Carpluck J et al (2013) Circannual rhythm in body temperature, torpor, and sensitivity to a(1) adenosine receptor agonist in arctic ground squirrels. J Biol Rhythms 28:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheriff MJ, Williams CT, Kenagy GJ, Buck CL, Barnes BM (2012) Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J Comp Physiol B 182:841–847

    Article  PubMed  Google Scholar 

  16. Chayama Y, Ando L, Tamura Y, Miura M, Yamaguchi Y (2016) Decreases in body temperature and body mass constitute pre-hibernation remodelling in the syrian golden hamster, a facultative mammalian hibernator. R Soc Open Sci 3:160002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sheriff MJ, Kenagy GJ, Richter M, Lee T, Toien O, Kohl F et al (2010) Phenological variation in annual timing of hibernation and breeding in nearby populations of arctic ground squirrels. Proc Biol Sci 278:2369–2375

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0 degree c in an arctic hibernator. Science 244:1593–1595

    Article  CAS  PubMed  Google Scholar 

  19. Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Article  CAS  PubMed  Google Scholar 

  20. Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262

    CAS  PubMed  Google Scholar 

  21. Drew KL, Jinka TR (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine a(1) receptors. J Neurosci 31:10752–10758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Karpovich SA, Toien O, Buck CL, Barnes BM (2009) Energetics of arousal episodes in hibernating arctic ground squirrels. J Comp Physiol B 179:691–700

    Article  PubMed  Google Scholar 

  23. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  CAS  PubMed  Google Scholar 

  24. Schubert KA, Boerema AS, Vaanholt LM, de Boer SF, Strijkstra AM, Daan S (2010) Daily torpor in mice: high foraging costs trigger energy-saving hypothermia. Biol Lett 6:132–135

    Article  PubMed  Google Scholar 

  25. Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dark J, Pelz KM (2008) Npy y1 receptor antagonist prevents npy-induced torpor-like hypothermia in cold-acclimated siberian hamsters. Am J Physiol Regul Integr Comp Physiol 294:R236–R245

    Article  CAS  PubMed  Google Scholar 

  27. Pelz KM, Routman D, Driscoll JR, Kriegsfeld LJ, Dark J (2008) Monosodium glutamate-induced arcuate nucleus damage affects both natural torpor and 2dg-induced torpor-like hypothermia in siberian hamsters. Am J Physiol Regul Integr Comp Physiol 294:R255–R265

    Article  CAS  PubMed  Google Scholar 

  28. Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide y signaling pathway. Am J Physiol Regul Integr Comp Physiol 291:R1303–R1309

    Article  CAS  PubMed  Google Scholar 

  29. Pelz KM, Dark J (2007) Icv npy y1 receptor agonist but not y5 agonist induces torpor-like hypothermia in cold-acclimated siberian hamsters. Am J Physiol Regul Integr Comp Physiol 292:R2299–R2311

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz C, Hampton M, Andrews MT (2015) Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav 14:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steward CA, Horan TL, Schuhler S, Bennett GW, Ebling FJ (2003) Central administration of thyrotropin releasing hormone (trh) and related peptides inhibits feeding behavior in the siberian hamster. Neuroreport 14:687–691

    Article  CAS  PubMed  Google Scholar 

  32. Tamura Y, Shintani M, Nakamura A, Monden M, Shiomi H (2005) Phase-specific central regulatory systems of hibernation in syrian hamsters. Brain Res 1045:88–96

    Article  CAS  PubMed  Google Scholar 

  33. Nishino S, Arrigoni J, Shelton J, Kanbayashi T, Dement WC, Mignot E (1997) Effects of thyrotropin-releasing hormone and its analogs on daytime sleepiness and cataplexy in canine narcolepsy. J Neurosci 17:6401–6408

    CAS  PubMed  Google Scholar 

  34. Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X, Kilduff TS (2009) Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 29:3705–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bjorness TE, Dale N, Mettlach G, Sonneborn A, Sahin B, Fienberg AA et al (2016) An adenosine-mediated glial-neuronal circuit for homeostatic sleep. J Neurosci 36:3709–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tupone D, Madden CJ, Morrison SF (2013) Central activation of the a1 adenosine receptor (a1ar) induces a hypothermic, torpor-like state in the rat. J Neurosci 33:14512–14525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang L, Qi Y, Yang Y (2015) Astrocytes control food intake by inhibiting agrp neuron activity via adenosine a1 receptors. Cell Rep 11:798–807

    Article  CAS  PubMed  Google Scholar 

  39. Jinka TR, Carlson ZA, Moore JT, Drew KL (2010) Altered thermoregulation via sensitization of a1 adenosine receptors in dietary-restricted rats. Psychopharmacology (Berl) 209:217–224

    Article  CAS  Google Scholar 

  40. Jinka TR, Toien O, Drew KL (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine a(1) receptors. J Neurosci 31:10752–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iliff BW, Swoap SJ (2012) Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Physiol Regul Integr Comp Physiol 303:R477–R484

    Article  CAS  PubMed  Google Scholar 

  42. Shiomi H, Tamura Y (2000) Pharmacological aspects of mammalian hibernation: central thermoregulation factors in hibernation cycle. Nippon Yakurigaku Zasshi (Folia Pharmacol Jpn) 116:304–312

    Article  CAS  Google Scholar 

  43. Walker JM, Haskell EH, Berger RJ, Heller HC (1980) Hibernation and circannual rhythms of sleep. Physiol Zool 53:8–11

    Article  Google Scholar 

  44. Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 36:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjorness TE, Greene RW (2009) Adenosine and sleep. Curr Neuropharmacol 7:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheriff MJ, Fridinger RW, Toien O, Barnes BM, Buck CL (2013) Metabolic rate and prehibernation fattening in free-living arctic ground squirrels. Physiol Biochem Zool 86:515–527

    Article  PubMed  Google Scholar 

  47. van Ooijen AM, van Marken Lichtenbelt WD, van Steenhoven AA, Westerterp KR (2004) Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol Behav 82:545–553

    Article  PubMed  CAS  Google Scholar 

  48. Rintamaki R, Grimaldi S, Englund A, Haukka J, Partonen T, Reunanen A et al (2008) Seasonal changes in mood and behavior are linked to metabolic syndrome. PLoS One 3:e1482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML, Smyth DJ et al (2015) Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat Commun 6:7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heller HC, Colliver GW, Beard J (1977) Thermoregulation during entrance into hibernation. Pflügers Arch 369:55–59

    Article  CAS  PubMed  Google Scholar 

  51. Tupone D, Madden C, Algwaiz H, Morrison S (2012) Adenosine a1-receptor agonist (cha) produces a hypothermic state by reducing bat thermogenesis. FASEB J 26:1083.1081

    Google Scholar 

  52. Sekizawa S, Horowitz JM, Horwitz BA, Chen CY (2012) Realignment of signal processing within a sensory brainstem nucleus as brain temperature declines in the syrian hamster, a hibernating species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198:267–282

    Article  PubMed  PubMed Central  Google Scholar 

  53. Muzzi M, Blasi F, Masi A, Coppi E, Traini C, Felici R et al (2013) Neurological basis of amp-dependent thermoregulation and its relevance to central and peripheral hyperthermia. J Cereb Blood Flow Metab 33:183–190

    Article  CAS  PubMed  Google Scholar 

  54. Krauchi K, Deboer T (2010) The interrelationship between sleep regulation and thermoregulation. Front Biosci (Landmark Ed) 15:604–625

    Article  Google Scholar 

  55. Barros RC, Branco LG, Carnio EC (2006) Respiratory and body temperature modulation by adenosine a1 receptors in the anteroventral preoptic region during normoxia and hypoxia. Respir Physiol Neurobiol 153:115–125

    Article  CAS  PubMed  Google Scholar 

  56. Alam MN, McGinty D, Szymusiak R (1996) Preoptic/anterior hypothalamic neurons: thermosensitivity in wakefulness and non rapid eye movement sleep. Brain Res 718:76–82

    Article  CAS  PubMed  Google Scholar 

  57. Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M, Perez E et al (2013) The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 33:2984–2993

    Article  CAS  PubMed  Google Scholar 

  58. Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J et al (2012) Pharmacological blockade of the cold receptor trpm8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 32:2086–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Drew K, Jinka T (2013) The bioenergetic network of adenosine in hibernation, sleep and thermoregulation. In: Masino S, Boison D (eds) Adenosine a key link between metabolism and brain activity. Springer, New York, pp 253–272

    Google Scholar 

  60. Boison D, Masino SA, Geiger JD (2011) Homeostatic bioenergetic network regulation: a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 6:1–12

    Article  CAS  Google Scholar 

  61. Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via a1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci USA 105:19992–19997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    Article  CAS  PubMed  Google Scholar 

  63. Barros RC, Branco LG (2000) Role of central adenosine in the respiratory and thermoregulatory responses to hypoxia. Neuroreport 11:193–197

    Article  CAS  PubMed  Google Scholar 

  64. Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning RH (2015) Induction of a torpor-like state by 5′-amp does not depend on h2s production. PLoS One 10:e0136113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhang J, Kaasik K, Blackburn MR, Lee CC (2006) Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–343

    Article  CAS  PubMed  Google Scholar 

  66. Muzzi M, Blasi F, Chiarugi A (2013) Amp-dependent hypothermia affords protection from ischemic brain injury. J Cereb Blood Flow Metab 33:171–174

    Article  CAS  PubMed  Google Scholar 

  67. Swoap SJ, Rathvon M, Gutilla M (2007) Amp does not induce torpor. Am J Physiol Regul Integr Comp Physiol 293:R468–R473

    Article  CAS  PubMed  Google Scholar 

  68. Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135

    Article  PubMed  Google Scholar 

  69. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  CAS  PubMed  Google Scholar 

  70. Grahame Hardie D (2014) Amp-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 276:543–559

    Article  CAS  PubMed  Google Scholar 

  71. Ipata PL, Camici M, Micheli V, Tozz MG (2011) Metabolic network of nucleosides in the brain. Curr Top Med Chem 11:909–922

    Article  CAS  PubMed  Google Scholar 

  72. Walther T, Novo M, Rossger K, Letisse F, Loret MO, Portais JC et al (2010) Control of atp homeostasis during the respiro-fermentative transition in yeast. Mol Syst Biol 6:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  74. Wall M, Dale N (2008) Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 6:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Young JD (2016) The slc28 (cnt) and slc29 (ent) nucleoside transporter families: a 30-year collaborative odyssey. Biochem Soc Trans 44:869–876

    Article  CAS  PubMed  Google Scholar 

  76. Mimouni M, Bontemps F, Van den Berghe G (1994) Kinetic studies of rat liver adenosine kinase. Explanation of exchange reaction between adenosine and amp. J Biol Chem 269:17820–17825

    CAS  PubMed  Google Scholar 

  77. Boison D (2016) Adenosinergic signaling in epilepsy. Neuropharmacology 104:131–139

    Article  CAS  PubMed  Google Scholar 

  78. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013) Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521:3389–3405

    Article  PubMed  PubMed Central  Google Scholar 

  80. Langlet F (2014) Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol 26:753–760

    Article  CAS  PubMed  Google Scholar 

  81. Ebling FJ (2014) On the value of seasonal mammals for identifying mechanisms underlying the control of food intake and body weight. Horm Behav 66:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frayling C, Britton R, Dale N (2011) Atp-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bratincsak A, McMullen D, Miyake S, Toth ZE, Hallenbeck JM, Palkovits M (2007) Spatial and temporal activation of brain regions in hibernation: C-fos expression during the hibernation bout in thirteen-lined ground squirrel. J Comp Neurol 505:443–458

    Article  PubMed  PubMed Central  Google Scholar 

  84. Toien O, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  CAS  PubMed  Google Scholar 

  85. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Physiology: hibernation in a tropical primate. Nature 429:825–826

    Article  CAS  PubMed  Google Scholar 

  86. Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by nmr. Physiol Genomics 31:15–24

    Article  CAS  PubMed  Google Scholar 

  87. Galster W, Morrison PR (1975) Gluconeogenesis in arctic ground squirrels between periods of hibernation. Am J Physiol 228:325–330

    CAS  PubMed  Google Scholar 

  88. Galster WA, Morrison P (1970) Cyclic changes in carbohydrate concentrations during hibernation in the arctic ground squirrel. Am J Physiol 218:1228–1232

    CAS  PubMed  Google Scholar 

  89. Jani A, Martin SL, Jain S, Keys D, Edelstein CL (2013) Renal adaptation during hibernation. Am J Physiol Renal Physiol 305:F1521–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Strijkstra AM, Daan S (1998) Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. Am J Physiol 275:R1110–R1117

    CAS  PubMed  Google Scholar 

  91. Larkin JE, Heller HC (1999) Sleep after arousal from hibernation is not homeostatically regulated. Am J Physiol 276:R522–R529

    CAS  PubMed  Google Scholar 

  92. Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128:265–268

    Article  CAS  PubMed  Google Scholar 

  93. Harris MB, Milsom WK (2000) Is hibernation facilitated by an inhibition of arousal?. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin, 241–250

    Chapter  Google Scholar 

  94. Tu BP, McKnight SL (2006) Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 7:696–701

    Article  CAS  PubMed  Google Scholar 

  95. Malan A (2010) Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock? J Biol Rhythms 25:166–175

    Article  PubMed  Google Scholar 

  96. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    Article  CAS  PubMed  Google Scholar 

  97. McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 15:1561–1571

    Article  CAS  Google Scholar 

  98. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dienel GA, McKenna MC (2014) A dogma-breaking concept: glutamate oxidation in astrocytes is the source of lactate during aerobic glycolysis in resting subjects. J Neurochem 131:395–398

    Article  CAS  PubMed  Google Scholar 

  100. Jinka TR, Rasley BT, Drew KL (2012) Inhibition of NMDA-type glutamate receptors induces arousal from torpor in hibernating arctic ground squirrels (Urocitellus parryii). J Neurochem 122(5):934–940. doi:10.1111/j.1471-4159.2012.07832.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hamberger AC, Chiang GH, Nylen ES, Scheff SW, Cotman CW (1979) Glutamate as a cns transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res 168:513–530

    Article  CAS  PubMed  Google Scholar 

  102. Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM et al (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279

    Article  PubMed  CAS  Google Scholar 

  103. Osborne PG, Hu Y, Covey DN, Barnes BN, Katz Z, Drew KL (1999) Determination of striatal extracellular gamma-aminobutyric acid in non-hibernating and hibernating arctic ground squirrels using quantitative microdialysis. Brain Res 839:1–6

    Article  CAS  PubMed  Google Scholar 

  104. Epperson LE, Karimpour-Fard A, Hunter LE, Martin SL (2011) Metabolic cycles in a circannual hibernator. Physiol Genomics 43:799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rose JC, Epperson LE, Carey HV, Martin SL (2011) Seasonal liver protein differences in a hibernator revealed by quantitative proteomics using whole animal isotopic labeling. Comp Biochem Physiol Part D Genomics Proteomics 6:163–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Andrews MT, Russeth KP, Drewes LR, Henry PG (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 296:R383–R393

    Article  CAS  PubMed  Google Scholar 

  107. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C et al (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Number (NSF IOS-1258179) and by the National Institute Of Neurological Disorders And Stroke of the National Institutes of Health under Award Number R03NS081637. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly L. Drew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drew, K.L., Frare, C. & Rice, S.A. Neural Signaling Metabolites May Modulate Energy Use in Hibernation. Neurochem Res 42, 141–150 (2017). https://doi.org/10.1007/s11064-016-2109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2109-4

Keywords

Navigation