Neurochemical Research

, Volume 42, Issue 2, pp 501–512 | Cite as

Chronic Intermittent Hypobaric Hypoxia Pretreatment Ameliorates Ischemia-Induced Cognitive Dysfunction Through Activation of ERK1/2-CREB-BDNF Pathway in Anesthetized Mice

  • Jintian Wang
  • Shixiao Zhang
  • Huijuan Ma
  • Shijie Yang
  • Zhao Liu
  • Xiaolei Wu
  • Sheng Wang
  • Yi Zhang
  • Yixian Liu
Original Paper

Abstract

Chronic intermittent hypobaric hypoxia (CIHH) has protective effects on heart and brain against ischemia injury through mobilizing endogenous adaptive mechanisms. However, whether CIHH prevents against cognitive impairment was not elucidated. The present study aimed to investigate the effect and mechanism of CIHH treatment on ischemia/reperfusion (IR)-induced cognitive dysfunction. Mice were randomly divided into 8 groups: Control, Sham, CIHH (simulating 5000 m high-altitude for 28 days, 6 h per day), IR (three 16-min occlusions of bilateral common carotid arteries interrupted by two 10-min intervals), CIHH + IR, PD98059 (inhibitor of MEK1/2) + CIHH + IR, PD98059 + Sham and PD98059 + IR group. Morris water maze and step-down passive avoidance tests were performed to evaluate the capability of learning and memory 1 month after ischemia. Thionine dyeing was to examine histological manifestations of pyramidal neurons in hippocampus CA1 region. Western blotting assay was for measurement of the protein expressions in ERK1/2-CREB-BDNF signaling pathway. There were a shorter escape latency and a longer percentage of time retaining in the target quadrant in Morris water maze test, fewer times of errors in the step-down avoidance test and a higher neuronal density of the hippocampal CA1 subfield in CIHH + IR group than in IR group. CIHH upregulated the expressions of BDNF, phosphorylated CREB, ERK1/2 and TrkB with or without ischemia. The protective effects of CIHH were abolished by PD98059 administration 15 min before ischemia. CIHH ameliorated ischemia-induced cognitive dysfunction through activation of ERK1/2-CREB-BDNF signaling pathway.

Keywords

Chronic intermittent hypobaric hypoxia Cognitive dysfunction Ischemia/reperfusion Brain-derived neurotrophic factor Extracellular signal-regulated kinases Mouse 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of Hebei Province, China (C2014206363) and Hebei Province Students innovative and entrepreneurial project (201510089016).

Author Contributions

Designed experiment and wrote manuscript: YL. Performed experiment: JW, ZL, XW. Analyzed data: HuijuanMa. Wrote manuscript: SZ. Reviewed and approved the final version of the manuscript: SW, YZ.

Compliance with Ethical Standards

Conflict of interest

Authors have no conflict of interest in this study.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Lei Y, Guo Q, Li Y, Jiang H, Ni W, Gu Y (2014) Characteristics of cognitive impairment in adults with cerebral ischemia. Zhonghua Yi Xue Za Zhi 94:984–989PubMedGoogle Scholar
  2. 2.
    Briones TL, Woods J, Wadowska M (2014) Chronic neuroinflammation and cognitive impairment following transient global cerebral ischemia: role of fractalkine/CX3CR1 signaling. J Neuroinflammation 11:13. doi: 10.1186/1742-2094-11-13 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee YS, Silva AJ (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140. doi: 10.1038/nrn2572 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143. doi: 10.1196/annals.1403.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Okuyama S, Morita M, Sawamoto A, Terugo T, Nakajima M, Furukawa Y (2015) Edaravone enhances brain-derived neurotrophic factor production in the ischemic mouse brain. Pharmaceuticals (Basel) 8:176–185. doi: 10.3390/ph8020176 CrossRefGoogle Scholar
  6. 6.
    Buckley PF, Pillai A, Howell KR (2011) Brain-derived neurotrophic factor: findings in schizophrenia. Curr Opin Psychiatry 24:122–127. doi: 10.1097/YCO.0b013e3283436eb7 CrossRefPubMedGoogle Scholar
  7. 7.
    Niitsu T, Shirayama Y, Matsuzawa D, Hasegawa T, Kanahara N, Hashimoto T, Shiraishi T, Shiina A, Fukami G, Fujisaki M, Watanabe H, Nakazato M, Asano M, Kimura S, Hashimoto K, Iyo M (2011) Associations of serum brain-derived neurotrophic factor with cognitive impairments and negative symptoms in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35:1836–1840. doi: 10.1016/j.pnpbp.2011.09.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Asevedo E, Gadelha A, Noto C, Mansur RB, Zugman A, Belangero SI, Berberian AA, Scarpato BS, Leclerc E, Teixeira AL, Gama CS, Bressan RA, Brietzke E (2013) Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia. J Psychiatr Res 47:1376–1382. doi: 10.1016/j.jpsychires.2013.05.032 CrossRefPubMedGoogle Scholar
  9. 9.
    Guo X, Chen ZH, Wang HL, Liu ZC, Wang XP, Zhou BH, Yang C, Zhang XP, Xiao L, Shu C, Chen JX, Wang GH (2015) WSKY, a traditional Chinese decoction, rescues cognitive impairment associated with NMDA receptor antagonism by enhancing BDNF/ERK/CREB signaling. Mol Med Rep 11:2927–2934. doi: 10.3892/mmr.2014.3086 PubMedGoogle Scholar
  10. 10.
    Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53:261–277. doi: 10.1016/j.neuron.2006.11.025 CrossRefPubMedGoogle Scholar
  11. 11.
    Callaghan CK, Kelly AM (2012) Differential BDNF signaling in dentate gyrus and perirhinal cortex during consolidation of recognition memory in the rat. Hippocampus 22:2127–2135. doi: 10.1002/hipo.22033 CrossRefPubMedGoogle Scholar
  12. 12.
    Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343. doi: 10.1038/sj.cdd.4401662 CrossRefPubMedGoogle Scholar
  13. 13.
    Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1. doi: 10.3389/neuro.02.001.2010 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Scott Bitner R (2012) Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem Pharmacol 83:705–714. doi: 10.1016/j.bcp.2011.11.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Roels B, Bentley DJ, Coste O, Mercier J, Millet GP (2007) Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol 101:359–368. doi: 10.1007/s00421-007-0506-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood) 233:627–650. doi: 10.3181/0710-mr-267 CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Yang HT, Zhou ZN (2007) The cardioprotection of intermittent hypoxic adaptation. Sheng Li Xue Bao 59:601–613PubMedGoogle Scholar
  18. 18.
    Guan Y, Gao L, Ma HJ, Li Q, Zhang H, Yuan F, Zhou ZN, Zhang Y (2010) Chronic intermittent hypobaric hypoxia decreases beta-adrenoceptor activity in right ventricular papillary muscle. Am J Physiol Heart Circ Physiol 298:H1267–H1272. doi: 10.1152/ajpheart.00410.2009 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X, Bean JC, Chen LH, Qin XH, Liu JH, Bai XC, Mei L, Gao TM (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30:12653–12663. doi: 10.1523/jneurosci.6414-09.2010 CrossRefPubMedGoogle Scholar
  20. 20.
    Gong SJ, Chen LY, Zhang M, Gong JX, Ma YX, Zhang JM, Wang YJ, Hu YY, Sun XC, Li WB, Zhang Y (2012) Intermittent hypobaric hypoxia preconditioning induced brain ischemic tolerance by up-regulating glial glutamate transporter-1 in rats. Neurochem Res 37:527–537. doi: 10.1007/s11064-011-0639-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Rybnikova E, Mironova V, Pivina S, Tulkova E, Ordyan N, Nalivaeva N, Turner A, Samoilov M (2007) Involvement of the hypothalamic–pituitary–adrenal axis in the antidepressant-like effects of mild hypoxic preconditioning in rats. Psychoneuroendocrinology 32:813–823. doi: 10.1016/j.psyneuen.2007.05.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Yang Y, Zhang X, Cui H, Zhang C, Zhu C, Li L (2014) Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett 568:44–49. doi: 10.1016/j.neulet.2014.03.037 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang H (2014) Establishment of an animal model of vascular dementia. Exp Ther Med 8:1599–1603. doi: 10.3892/etm.2014.1926 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kato H, Liu Y, Araki T, Kogure K (1991) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 553:238–242CrossRefPubMedGoogle Scholar
  25. 25.
    Kirino T, Tamura A, Sano K (1986) A reversible type of neuronal injury following ischemia in the gerbil hippocampus. Stroke 17:455–459CrossRefPubMedGoogle Scholar
  26. 26.
    Levine BD (2002) Intermittent hypoxic training: fact and fancy. High Alt Med Biol 3:177–193. doi: 10.1089/15270290260131911 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhuang J, Zhou Z (1999) Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms. Biol Signals Recept 8:316–322CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Y, Zhou ZN (2012) Beneficial effects of intermittent hypobaric hypoxia on the body. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28:504–9PubMedGoogle Scholar
  29. 29.
    Udayabanu M, Kumaran D, Nair RU, Srinivas P, Bhagat N, Aneja R, Katyal A (2008) Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia. Brain Res 1230:138–149. doi: 10.1016/j.brainres.2008.06.081 CrossRefPubMedGoogle Scholar
  30. 30.
    Wu L, Feng XT, Hu YQ, Tang N, Zhao QS, Li TW, Li HY, Wang QB, Bi XY, Cai XK (2015) Global gene expression profile of the hippocampus in a rat model of vascular dementia. Tohoku J Exp Med 237:57–67. doi: 10.1620/tjem.237.57 CrossRefPubMedGoogle Scholar
  31. 31.
    Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172. doi: 10.1016/j.neuroscience.2008.04.073 CrossRefPubMedGoogle Scholar
  32. 32.
    Lee KY, Jeong EJ, Huh J, Cho N, Kim TB, Jeon BJ, Kim SH, Kim HP, Sung SH (2012) Cognition-enhancing and neuroprotective activities of the standardized extract of Betula platyphylla bark and its major diarylheptanoids. Phytomedicine 19:1315–1320. doi: 10.1016/j.phymed.2012.09.012 CrossRefPubMedGoogle Scholar
  33. 33.
    Debette S (2013) Vascular risk factors and cognitive disorders. Rev Neurol (Paris) 169:757–764. doi: 10.1016/j.neurol.2013.07.022 CrossRefGoogle Scholar
  34. 34.
    Mou L, Heldt SA, Ressler KJ (2011) Rapid brain-derived neurotrophic factor-dependent sequestration of amygdala and hippocampal GABA(A) receptors via different tyrosine receptor kinase B-mediated phosphorylation pathways. Neuroscience 176:72–85. doi: 10.1016/j.neuroscience.2010.12.041 CrossRefPubMedGoogle Scholar
  35. 35.
    Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA (2006) Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiol Dis 22:453–462. doi: 10.1016/j.nbd.2005.12.005 CrossRefPubMedGoogle Scholar
  36. 36.
    Kim J, Kwon JT, Kim HS, Josselyn SA, Han JH (2014) Memory recall and modifications by activating neurons with elevated CREB. Nat Neurosci 17:65–72. doi: 10.1038/nn.3592 CrossRefPubMedGoogle Scholar
  37. 37.
    Kim DH, Kim JM, Park SJ, Cai M, Liu X, Lee S, Shin CY, Ryu JH (2012) GABA(A) receptor blockade enhances memory consolidation by increasing hippocampal BDNF levels. Neuropsychopharmacology 37:422–433. doi: 10.1038/npp.2011.189 CrossRefPubMedGoogle Scholar
  38. 38.
    Kim HJ, Kim W, Kong SY (2013) Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease. Arch Pharm Res 36:1279–1290. doi: 10.1007/s12272-013-0238-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337. doi: 10.1038/nm.1912 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726CrossRefPubMedGoogle Scholar
  41. 41.
    Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623CrossRefPubMedGoogle Scholar
  42. 42.
    Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9. doi: 10.1111/j.1471-4159.2010.07080.x CrossRefPubMedGoogle Scholar
  43. 43.
    Shakil H, Saleem S (2013) Genetic deletion of prostacyclin IP receptor exacerbates transient global cerebral ischemia in aging mice. Brain Sci 3:1095–108CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang J, Ming H, Chen R, Ju JM, Peng WD, Zhang GX, Liu CF (2015) CIH-induced neurocognitive impairments are associated with hippocampal Ca(2+) overload, apoptosis, and dephosphorylation of ERK1/2 and CREB that are mediated by overactivation of NMDARs. Brain Res 1625:64–72. doi: 10.1016/j.brainres.2015.08.012 CrossRefPubMedGoogle Scholar
  45. 45.
    Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172–178. doi: 10.1101/lm.67804 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Choi YS, Cho HY, Hoyt KR, Naegele JR, Obrietan K (2008) IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 56:791–800. doi: 10.1002/glia.20653 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Iida N, Namikawa K, Kiyama H, Ueno H, Nakamura S, Hattori S (2001) Requirement of Ras for the activation of mitogen-activated protein kinase by calcium influx, cAMP, and neurotrophin in hippocampal neurons. J Neurosci 21:6459–6466PubMedGoogle Scholar
  48. 48.
    Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540PubMedGoogle Scholar
  49. 49.
    Jeon SJ, Rhee SY, Seo JE, Bak HR, Lee SH, Ryu JH, Cheong JH, Shin CY, Kim GH, Lee YS, Ko KH (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69:214–222. doi: 10.1016/j.neures.2010.11.008 CrossRefPubMedGoogle Scholar
  50. 50.
    Bath KG, Akins MR, Lee FS (2012) BDNF control of adult SVZ neurogenesis. Dev Psychobiol 54:578–589. doi: 10.1002/dev.20546 CrossRefPubMedGoogle Scholar
  51. 51.
    Arany I, Megyesi JK, Reusch JE, Safirstein RL (2005) CREB mediates ERK-induced survival of mouse renal tubular cells after oxidant stress. Kidney Int 68:1573–1582. doi: 10.1111/j.1523-1755.2005.00569.x CrossRefPubMedGoogle Scholar
  52. 52.
    Schulte JH, Schramm A, Klein-Hitpass L, Klenk M, Wessels H, Hauffa BP, Eils J, Eils R, Brodeur GM, Schweigerer L, Havers W, Eggert A (2005) Microarray analysis reveals differential gene expression patterns and regulation of single target genes contributing to the opposing phenotype of TrkA- and TrkB-expressing neuroblastomas. Oncogene 24:165–177. doi: 10.1038/sj.onc.1208000 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jintian Wang
    • 1
  • Shixiao Zhang
    • 1
  • Huijuan Ma
    • 1
  • Shijie Yang
    • 3
  • Zhao Liu
    • 1
  • Xiaolei Wu
    • 1
  • Sheng Wang
    • 1
    • 2
  • Yi Zhang
    • 1
    • 2
  • Yixian Liu
    • 1
    • 2
  1. 1.Department of PhysiologyHebei Medical UniversityShijiazhuangChina
  2. 2.Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuangChina
  3. 3.Department of UrologyThird Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations