Skip to main content

Advertisement

Log in

Organ Distribution of 13N Following Intravenous Injection of [13N]Ammonia into Portacaval-Shunted Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ammonia is neurotoxic, and chronic hyperammonemia is thought to be a major contributing factor to hepatic encephalopathy in patients with liver disease. Portacaval shunting of rats is used as an animal model to study the detrimental metabolic effects of elevated ammonia levels on body tissues, particularly brain and testes that are deleteriously targeted by high blood ammonia. In normal adult rats, the initial uptake of label (expressed as relative concentration) in these organs was relatively low following a bolus intravenous injection of [13N]ammonia compared with lungs, kidneys, liver, and some other organs. The objective of the present study was to determine the distribution of label following intravenous administration of [13N]ammonia among 14 organs in portacaval-shunted rats at 12 weeks after shunt construction. At an early time point (12 s) following administration of [13N]ammonia the relative concentration of label was highest in lung with lower, but still appreciable relative concentrations in kidney and heart. Clearance of 13N from blood and kidney tended to be slower in portacaval-shunted rats versus normal rats during the 2–10 min interval after the injection. At later times post injection, brain and testes tended to have higher-than-normal 13N levels, whereas many other tissues had similar levels in both groups. Thus, reduced removal of ammonia from circulating blood by the liver diverts more ammonia to extrahepatic tissues, including brain and testes, and alters the nitrogen homeostasis in these tissues. These results emphasize the importance of treatment paradigms designed to reduce blood ammonia levels in patients with liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

BUI:

Brain uptake index

HE:

Hepatic encephalopathy

PCS:

Portacaval shunt

PET:

Positron-emission tomography

References

  1. Duffy TE, Plum F (1982) Hepatic encephalopathy. In: Arias I, Popper H, Schachter D, Schafritz DA. (eds) The liver: biology and pathobiology. Raven Press, New York, pp 693–715

    Google Scholar 

  2. Cooper AJL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  3. Häberle J (2011) Clinical practice: the management of hyperammonemia. Eur J Pediatr 170:21–34

    Article  PubMed  Google Scholar 

  4. Butterworth RF (2014) Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine. Mol Genet Metab 113:113–117

    Article  CAS  PubMed  Google Scholar 

  5. Hadjihambi A, Khetan V, Jalan R (2014) Pharmacotherapy for hyperammonemia. Expert Opin Pharmacother 15:1685–1695

    Article  CAS  PubMed  Google Scholar 

  6. Gjedde A, Lockwood AH, Duffy TE, Plum F (1978) Cerebral blood flow and metabolism in chronically hyperammonemic rats: effect of an acute ammonia challenge. Ann Neurol 3:325–330

    Article  CAS  PubMed  Google Scholar 

  7. Lockwood AH, Ginsberg MD, Rhoades HM, Gutierrez MT (1986) Cerebral glucose metabolism after portacaval shunting in the rat. Patterns of metabolism and implications for the pathogenesis of hepatic encephalopathy. J Clin Invest 78:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cruz NF, Dienel GA (1994) Brain glucose levels in portacaval-shunted rats with chronic, moderate hyperammonemia: implications for determination of local cerebral glucose utilization. J Cereb Blood Flow Metab 14:113–124

    Article  CAS  PubMed  Google Scholar 

  9. Cruz NF, Duffy TE (1983) Local cerebral glucose metabolism in rats with chronic portacaval shunts. J Cereb Blood Flow Metab 3:311–320

    Article  CAS  PubMed  Google Scholar 

  10. Cooper AJL, Mora SN, Cruz NF, Gelbard AS (1985) Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem 44:1716–1723

    Article  CAS  PubMed  Google Scholar 

  11. Buttrose M, McKellar D, Welbourne TC (1987) Gut-liver interaction in glutamine homeostasis: portal ammonia role in uptake and metabolism. Am J Physiol 252:E746–E750

    CAS  PubMed  Google Scholar 

  12. Cooper AJL, Gelbard AS, Freed BR (1985) Nitrogen-13 as a biochemical tracer. Adv Enzymol Relat Areas Mol Biol 57:251–356

    CAS  PubMed  Google Scholar 

  13. Cooper AJL (2011) 13N as a tracer for studying glutamate metabolism. Neurochem Int 59:456–464

    Article  CAS  PubMed  Google Scholar 

  14. Cooper AJL, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 254:4982–4992

    CAS  PubMed  Google Scholar 

  15. Cooper AJL, Nieves E, Coleman AE, Filc-DeRicco S, Gelbard AS (1987) Short-term metabolic fate of [13N]ammonia in rat liver in vivo. J Biol Chem 262:1073–1080

    CAS  PubMed  Google Scholar 

  16. Cooper AJL, Freed BR (2005) Metabolism of [13N]ammonia in rat lung. Neurochem Int 47:103–118

    Article  CAS  PubMed  Google Scholar 

  17. Keiding S, Pavese N (2013) Brain metabolism in patients with hepatic encephalopathy studied by PET and MR. Arch Biochem Biophys 536:131–142

    Article  CAS  PubMed  Google Scholar 

  18. Freed BR, Gelbard AS (1982) Distribution of 13N following intravenous injection of [13N]ammonia in the rat. Can J Physiol Pharmacol 60:60–67

    Article  CAS  PubMed  Google Scholar 

  19. Carter CC, Lifton JF, Welch MJ (1973) Organ uptake and blood pH and concentration effects of ammonia in dogs determined with ammonia labeled with 10 min half-lived nitrogen 13. Neurology 23:204–213

    Article  CAS  PubMed  Google Scholar 

  20. Lockwood AH, Finn RD, Campbell JA, Richman TB (1980) Factors that affect the uptake of ammonia by the brain: the blood–brain pH gradient. Brain Res 181:259–266

    Article  CAS  PubMed  Google Scholar 

  21. Phelps ME, Huang SC, Hoffman EJ, Selin C, Kuhl DE (1981) Cerebral extraction of N-13 ammonia: its dependence on cerebral blood flow and capillary permeability—surface area product. Stroke 12:607–619

    Article  CAS  PubMed  Google Scholar 

  22. Raichle ME, Larson KB (1981) The significance of the NH3–NH+(4) equilibrium on the passage of 13N-ammonia from blood to brain. A new regional residue detection model. Circ Res 48:913–937

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  24. Mobasheri A, Marples D, Young IS, Floyd RV, Moskaluk CA, Frigeri A (2007) Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels (Austin) 1:30–39

    Article  Google Scholar 

  25. Nielsen S, Frøkiær J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    Article  CAS  PubMed  Google Scholar 

  26. Assentoft M, Kaptan S, Schneider H-P, Deitmer JW, de Groot BL, MacAulay N (2016) Aquaporin 4 as a NH3 channel. J Biol Chem 291:19184–19195

    Article  CAS  PubMed  Google Scholar 

  27. Nagaraja TN, Brookes N (1998) Intracellular acidification induced by passive and active transport of ammonium ions in astrocytes. Am J Physiol 274:C883–C891

    CAS  PubMed  Google Scholar 

  28. Mardini H, Smith FE, Record CO, Blamire AM (2011) Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia. J Hepatol 54:1154–1160

    Article  CAS  PubMed  Google Scholar 

  29. Lee SH, Fisher B (1961) Portacaval shunt in the rat. Surgery 50:668–672

    CAS  PubMed  Google Scholar 

  30. Gelbard AS, Clarke LP, McDonald JM, Monahan WG, Tilbury RS, Kuo TYT, Laughlin JS (1975) Enzymatic synthesis and organ distribution studies with 13N-labeled L-glutamine and L-glutamic acid. Radiology 116:127–132

    Article  CAS  Google Scholar 

  31. Woodard HQ, Bigler RE, Freed B, Russ G (1975) Expression of tissue isotope distribution. J Nucl Med 16:958–959

    CAS  PubMed  Google Scholar 

  32. Freed BR (2005) Expression of tracer concentration. J Nucl Med 46:2121

    PubMed  Google Scholar 

  33. Hindfelt B, Plum F, Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 59:386–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ehrlich M, Plum F, Duffy TE (1980) Blood and brain ammonia concentrations after portacaval anastomosis. Effects of acute ammonia loading. J Neurochem 34:1538–1542

    Article  CAS  PubMed  Google Scholar 

  35. Duda GD, Handler P (1958) Kinetics of ammonia metabolism in vivo. J Biol Chem 232:303–314

    CAS  PubMed  Google Scholar 

  36. Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, Plum F (1979) The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 63:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishiitsutsuji-Uwo JM, Ross BD, Krebs HA (1967) Metabolic activities of the isolated perfused rat kidney. Biochem J 103:852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rama Rao KV, Chen M, Simard JM, Norenberg MD (2003) Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport 14:2379–2382

    Article  CAS  PubMed  Google Scholar 

  39. Bodega G, Suarez I, Lopez-Fernandez LA, Garcia MI, Kober M, Penedo M, Luna M, Juarez S, Ciordia S, Oria M, Cordoba J, Fernandez B (2012) Ammonia induces aquaporin-4 rearrangement in the plasma membrane of cultured astrocytes. Neurochem Int 61:1314–1324

    Article  CAS  PubMed  Google Scholar 

  40. Brookes N (2000) Functional integration of the transport of ammonium, glutamate and glutamine in astrocytes. Neurochem Int 37:121–129

    Article  CAS  PubMed  Google Scholar 

  41. Wu C (1963) Glutamine synthetase. I. A comparative study of its distribution in animals and its inhibition by DL-allo-delta-hydroxylysine. Comp Biochem Physiol 9:335–351

    Article  CAS  PubMed  Google Scholar 

  42. Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249:5070–5079

    CAS  PubMed  Google Scholar 

  43. Walsh WF, Fill HR, Harper PV (1977) Nitrogen-13-labeled ammonia for myocardial imaging. Semin Nucl Med 7:59–66

    Article  CAS  PubMed  Google Scholar 

  44. Pfaller W, Gstraunthaler G (1998) Nephrotoxicity testing in vitro–what we know and what we need to know. Environ Health Perspect 106(Suppl 2):559–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olde Damink SW, Dejong CH, Deutz NE, Redhead DN, Hayes PC, Soeters PB, Jalan R (2006) Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis. Am J Physiol Gastrointest Liver Physiol 291:G189–G194

    Article  CAS  PubMed  Google Scholar 

  46. Krivokapich J, Barrio JR, Phelps ME, Watanabe CR, Keen RE, Padgett HC, Douglas A, Shine KI (1984) Kinetic characterization of 13NH3 and [13N]glutamine metabolism in rabbit heart. Am J Physiol 246:H267–H273

    CAS  PubMed  Google Scholar 

  47. Desjardins P, Rao KV, Michalak A, Rose C, Butterworth RF (1999) Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab Brain Dis 14:273–280

    Article  CAS  PubMed  Google Scholar 

  48. Ganda OP, Ruderman NB (1976) Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism 25:427–435

    Article  CAS  PubMed  Google Scholar 

  49. Garber AJ, Karl IE, Kipnis DM (1976) Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release. J Biol Chem 251:826–835

    CAS  PubMed  Google Scholar 

  50. Daemen MJAP, Thijssen HHW, van Essen H, Vervoort-Peters HTM, Prinzen FW, Struyker Boudier HAJ, Smits JFM (1989) Liver blood flow measurement in the rat the electromagnetic versus the microsphere and the clearance methods. J Pharmacol Methods 21:287–297

    Article  CAS  PubMed  Google Scholar 

  51. Hollenberg M, Dougherty J (1966) Liver blood flow measured by portal venous and hepatic arterial routes with Kr-85. Am J Physiol 210:926–932

    CAS  PubMed  Google Scholar 

  52. Eipel C, Abshagen K, Vollmar B (2010) Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 16:6046–6057

    Article  PubMed  PubMed Central  Google Scholar 

  53. Katz ML, Bergman EN (1969) Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. Am J Physiol 216:946–952

    CAS  PubMed  Google Scholar 

  54. More N, Lobosotomayor G, Basse-Cathalinat B, Bedin C, Balabaud C (1984) Splanchnic arterial blood flow in rats with portacaval shunts. Am J Physiol 246:G331–G334

    CAS  PubMed  Google Scholar 

  55. Häussinger D (1998) Hepatic glutamine transport and metabolism. Adv Enzymol Relat Areas Mol Biol 72:43–86

    PubMed  Google Scholar 

  56. Walser M, Bodenlos LJ (1959) Urea metabolism in man. J Clin Invest 38:1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Häussinger D, Sies H, Gerok W (1985) Functional hepatocyte heterogeneity in ammonia metabolism. The intercellular glutamine cycle. J Hepatol 1:3–14

    Article  PubMed  Google Scholar 

  58. da Silva R, Levillain O, Brosnan JT, Araneda S, Brosnan ME (2013) The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes. Can J Physiol Pharmacol 91:362–368

    Article  PubMed  Google Scholar 

  59. Aldrete JS (1975) Quantification of the capacity of the liver to remove ammonia from the circulation of dogs with portacaval transposition. Surg Gynecol Obstet 141:399–404

    CAS  PubMed  Google Scholar 

  60. Glasgow AM, Stolar CJ, Altman RP, Schulman JD (1982) Ammonia metabolism in dogs with portacaval shunts. J Pediatr Surg 17:459–462

    Article  CAS  PubMed  Google Scholar 

  61. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12:390–399

    PubMed  Google Scholar 

  62. Danielyan L, Zellmer S, Sickinger S, Tolstonog GV, Salvetter J, Lourhmati A, Reissig DD, Gleiter CH, Gebhardt R, Buniatian GH (2009) Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin. PLoS One 4:e4416

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wolfersberger MG, Tabachnick J, Finkelstein BS, Levin M (1973) L-pyrrolidone carboxylic acid content in mammalian epidermis and other tissues. J Invest Dermatol 60:278–281

    Article  CAS  PubMed  Google Scholar 

  64. Barrett JG, Scott IR (1983) Pyrrolidone carboxylic acid synthesis in guinea pig epidermis. J Invest Dermatol 81:122–124

    Article  CAS  PubMed  Google Scholar 

  65. Ennis SR, Kawai N, Ren XD, Abdelkarim GE, Keep RF (1998) Glutamine uptake at the blood–brain barrier is mediated by N-system transport. J Neurochem 71:2565–2573

    Article  CAS  PubMed  Google Scholar 

  66. Cooper AJL, Jeitner TM (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16. doi:10.3390/biom6020016

    Article  PubMed Central  Google Scholar 

  67. Girard G, Giguere JF, Butterworth RF (1993) Region-selective reductions in activities of glutamine synthetase in rat brain following portacaval anastomosis. Metab Brain Dis 8:207–215

    Article  CAS  PubMed  Google Scholar 

  68. Kanamori K, Ross BD, Chung JC, Kuo EL (1996) Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo. J Neurochem 67:1584–1594

    Article  CAS  PubMed  Google Scholar 

  69. Brusilow SW, Koehler RC, Traystman RJ, Cooper AJL (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurother 7:452–470

    Article  CAS  Google Scholar 

  70. Brück J, Görg B, Bidmon HJ, Zemtsova I, Qvartskhava N, Keitel V, Kircheis G, Häussinger D (2011) Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J Hepatol 54:251–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Barry Freed for his contributions to the synthesis of 13N and the labeling experiments.

Funding

This work was supported by National Institutes of Health Grants DK 16739 and DK 37116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. L. Cooper.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, N.F., Dienel, G.A., Patrick, P.A. et al. Organ Distribution of 13N Following Intravenous Injection of [13N]Ammonia into Portacaval-Shunted Rats. Neurochem Res 42, 1683–1696 (2017). https://doi.org/10.1007/s11064-016-2096-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2096-5

Keywords

Navigation