Neurochemical Research

, Volume 42, Issue 2, pp 406–414 | Cite as

Targeting of Heat Shock Protein HSPA6 (HSP70B′) to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells

  • Larissa Becirovic
  • Ian R. Brown
Original Paper


Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B′) was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.


HSPA6 (HSP70B′) Human neuronal SH-SY5Y cells Triptolide 



This research is supported by grants from Natural Sciences and Engineering Research Council (NSERC) of Canada to I.R.B.


  1. 1.
    Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  2. 2.
    Pardue ML, Ballinger DG, Hogan NC (1992) The heat shock response, cells coping with cellular stress. Ann N Y Acad Sci 663:125–138. doi: 10.1111/j.1749-6632.1992.tb38656.x CrossRefPubMedGoogle Scholar
  3. 3.
    Velichko AK, Markova EN, Petrova NV et al (2013) Mechanisms of heat shock response in mammals. Cell Mol Life Sci 70:4229–4241. doi: 10.1007/s00018-013-1348-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186. doi: 10.1152/japplphysiol.01267.2001 CrossRefPubMedGoogle Scholar
  5. 5.
    Kim YE, Hipp MS, Bracher A et al (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355. doi: 10.1146/annurev-biochem-060208-092442 CrossRefPubMedGoogle Scholar
  6. 6.
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  7. 7.
    Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634. doi: 10.1146/annurev.cb.09.110193.003125 CrossRefPubMedGoogle Scholar
  8. 8.
    Morimoto RI, Georgopoulos C, Tissieres A (1994) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  9. 9.
    Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi: 10.1016/j.cell.2006.04.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904. doi: 10.1038/nature02264 CrossRefPubMedGoogle Scholar
  11. 11.
    Agorogiannis EI, Agorogiannis GI, Papadimitriou A et al (2004) Protein misfolding in neurodegenerative diseases. Neuropath Appl Neuro 30:215–224. doi: 10.1111/j.1365-2990.2004.00558.x CrossRefGoogle Scholar
  12. 12.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. doi: 10.1038/nm1066 CrossRefPubMedGoogle Scholar
  13. 13.
    Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22. doi: 10.1038/nrn1587 CrossRefPubMedGoogle Scholar
  14. 14.
    Brown IR (2007a) Heat shock proteins and neurodegenerative diseases. In: Calderwood ST (ed) Cell stress proteins. Springer, New YorkGoogle Scholar
  15. 15.
    Brown IR (2007b) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158. doi: 10.1196/annals.1391.032
  16. 16.
    Asea AA, Brown IR (2008) Heat shock proteins and the brain: implications for neurodegenerative diseases and neuroprotection. Springer, New YorkCrossRefGoogle Scholar
  17. 17.
    Soto C, Estrada DL (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189. doi: 10.1001/archneurol.2007.56 CrossRefPubMedGoogle Scholar
  18. 18.
    Adachi H, Katsuno M, Waza M et al (2009) Heat shock proteins in neurodegenerative disease: pathogenic roles and therapeutic implications. Int J Hyperther 25:647–654. doi: 10.3109/02656730903315823 CrossRefGoogle Scholar
  19. 19.
    Pratt WB, Gestwicki JE, Osawa Y et al (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Phamacol Toxicol 55:353–371. doi: 10.1146/annurev-pharmtox-010814-124332 CrossRefGoogle Scholar
  20. 20.
    Tavaria M, Gabriele T, Kola I et al (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperon 1:23–28CrossRefGoogle Scholar
  21. 21.
    Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201. doi: 10.1016/S0163-7258(98)00028-X CrossRefPubMedGoogle Scholar
  22. 22.
    Bukau B, Deuerling E, Pfund C et al (2000) Getting newly synthesized proteins into shape. Cell 101:119–122. doi: 10.1016/S0092-8674(00)80806-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858. doi: 10.1126/science.1068408 CrossRefPubMedGoogle Scholar
  24. 24.
    Young JC, Barral JM, Hartl FU (2003) More than folding—localized functions of cytosolic chaperones. Trends Biochem Sci 28:541–547. doi: 10.1016/j.tibs.2003.08.009 CrossRefPubMedGoogle Scholar
  25. 25.
    De Los Rios P, Ben-Zvi A, Slutsky O et al (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci USA 103:6166–6171. doi: 10.1073/pnas.0510496103 CrossRefGoogle Scholar
  26. 26.
    Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710. doi: 10.1016/j.febslet.2007.05.039 CrossRefPubMedGoogle Scholar
  27. 27.
    Brocchieri JL, Conway de Macario E, Macario AJ (2008) Hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19. doi: 10.1186/1471-2148-8-19 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602. doi: 10.1021/jm100054f CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88:291–300. doi: 10.1139/O09-175 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Butler SJ, Lee DW, Burney CW et al (2013) Microfluidic approach for direct and uniform laser irradiation to study biochemical state changes on jurkat-T cells. J Biomed Opt 18:117004. doi: 10.1117/1.JBO.18.11.117004 CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang J, Maes EG, Taylor AB et al (2007) Structural basis of J cochaperone binding and regulation of Hsp70. Mol Cell 28:422–433. doi: 10.1016/j.molcel.2007.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rauch JN, Gestwicki JE (2014) Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem 289:1402–1414. doi: 10.1074/jbc.M113.521997 CrossRefPubMedGoogle Scholar
  33. 33.
    Chow AM, Brown IR (2007) Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperon 3:237–244. doi: 10.1379/CSC-269.1 CrossRefGoogle Scholar
  34. 34.
    Noonan EJ, Place RF, Giardina C et al (2007a) Hsp70B′ regulation and function. Cell Stress Chaperon 12:219–229. doi: 10.1379/CSC-278.1
  35. 35.
    Noonan EJ, Place RF, Rasoulpour RJ et al (2007b) Cell number-dependent regulation of Hsp70B′ expression: evidence of an extracellular regulator. J Cell Physiol 210:201–211. doi: 10.1002/jcp.20875
  36. 36.
    Noonan EJ, Fournier G, Hightower LE (2008a) Surface expression of HSP70B′ in response to proteasome inhibition in human colon cells. Cell Stress Chaperon 13:105–110. doi: 10.1007/s12192-007-0003-3
  37. 37.
    Noonan EJ, Giardina C, Hightower LE (2008b) Hsp70B′ and Hsp72 form a complex in stressed human colon cells and each contributes to cytoprotection. Exp Cell Res 314:2468–2476. doi: 10.1016/j.yexcr.2008.05.002
  38. 38.
    Deane CAS, Brown IR (2016) Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperon. doi: 10.1007/s12192-016-0708-2 Google Scholar
  39. 39.
    Dunkel P, Chai CI, Sperlagh B et al (2012) Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s, and Huntington’s diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 21:1267–1308. doi: 10.1517/13543784.2012.703178 CrossRefPubMedGoogle Scholar
  40. 40.
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222. doi: 10.1016/j.cell.2012.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612. doi: 10.1038/nrm1172 CrossRefPubMedGoogle Scholar
  42. 42.
    Raska I, Shaw PJ, Cmarko D (2006) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235. doi: 10.1016/S0074-7696(06)55004-1 CrossRefPubMedGoogle Scholar
  43. 43.
    Brown JM, Greene J, das Neves RR et al (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182:1083–1097. doi: 10.1083/jcb.200803174 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sirri V, Urcuqui-Inchima S, Roussel P et al (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31. doi: 10.1007/s00418-007-0359-6 CrossRefPubMedGoogle Scholar
  45. 45.
    Hernandez-Verdun D, Roussel P, Thiry M et al (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev 13:135–144. doi: 10.1002/wrna.39 Google Scholar
  46. 46.
    Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3:1–13. doi: 10.1101/cshperspect.a000646 CrossRefGoogle Scholar
  47. 47.
    Khalouei S, Chow AM, Brown IR (2014b) Localization of heat shock protein HSPA6 (HSP70B′) to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 131:743–754. doi: 10.1111/jnc.12970
  48. 48.
    O’Brien TP, Bult CJ, Cremer C et al (2003) Genome function and nuclear architecture: from gene expression to nanoscience. Genome Res 13:1029–1041. doi: 10.1101/gr.946403 CrossRefPubMedGoogle Scholar
  49. 49.
    Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417. doi: 10.1038/nature05916 CrossRefPubMedGoogle Scholar
  50. 50.
    Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10:457–466. doi: 10.1038/nrg2592 CrossRefPubMedGoogle Scholar
  51. 51.
    Rieder D, Trajanoski Z, McNally JG (2012) Transcription factories. Front Genet 3:1–12. doi: 10.3389/fgene.2012.00221 CrossRefGoogle Scholar
  52. 52.
    Rieder D, Ploner C, Krogsdam AM et al (2014) Co-expressed genes prepositioned in spatial neighbourhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 71:1741–1759. doi: 10.1007/s00018-013-1465-3 CrossRefPubMedGoogle Scholar
  53. 53.
    Bensaude O (2011) Inhibiting eukaryotic transcription. Transcription 2:103–108. doi: 10.4161/trns.2.3.16172 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Khalouei S, Chow AM, Brown IR (2014a) Stress-induced localization of HSPA6 (HSP70B′) and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells. Cell Stress Chaperon 19:321–327. doi: 10.1007/s12192-013-0459-2
  55. 55.
    Korecka JA, van Kesternen RE, Blaas E et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8:1–17. doi: 10.1371/journal.pone.0063862 CrossRefGoogle Scholar
  56. 56.
    Jonkers I, Kwak H, Lis JT (2014) Genome-wide dynamics of pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. Elife 3:1–25. doi: 10.7554/eLife.02407 CrossRefGoogle Scholar
  57. 57.
    Vispe S, DeVries L, Creancier L et al (2009) Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol Cancer Ther 8:2780–2790. doi: 10.1158/1535-7163.MCT-09-0549 CrossRefPubMedGoogle Scholar
  58. 58.
    Wang J, Shi Z, Xu X et al (2013) Triptolide inhibits amyloid-B production and protects neural cells by inhibiting CXCR2 activity. J Alzheimers Dis 33:217–229. doi: 10.3233/JAD-2012-120841 PubMedGoogle Scholar
  59. 59.
    Manzo SG, Zhou Z, Wang Y et al (2012) Natural product triptolide mediates cancer cell death by triggering CDK7-dependent degradation of RNA polymerase II. Am Assoc Cancer Res 72:5363–5373. doi: 10.1158/0008-5472.CAN-12-1006 CrossRefGoogle Scholar
  60. 60.
    Salsman J, Zimmerman N, Chen T et al (2008) Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS One 4:e1000100. doi: 10.1371/journal.ppat.1000100 Google Scholar
  61. 61.
    Sytnikova YA, Kubarenko AV, Schafer A et al (2011) Gadd45a is an RNA binding protein and is localized in nuclear speckles. PLoS One 6:e14500. doi: 10.1371/journal.pone.0014500 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Forster JI, Koglsberger S, Trefois C et al (2016) Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J Biomol Screen 21:496–509. doi: 10.1177/1087057115625190 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cheung YT, Lau WK, Yu MS et al (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30:127–135. doi: 10.1016/j.neuro.2008.11.001 CrossRefPubMedGoogle Scholar
  64. 64.
    Agholme L, Lindstrom T, Kagedal K et al (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20:1069–1082. doi: 10.3233/JAD-2010-091363 PubMedGoogle Scholar
  65. 65.
    Dimant H, Solomon B (2010) Filamentous phages reduce alpha-synuclein oligomerization in the membrane fraction of SH-SY5Y cells. Neurodegener Dis 7:203–205. doi: 10.1159/000295664 CrossRefPubMedGoogle Scholar
  66. 66.
    Lopes FM, Schroder R, Conte de Frota Junior, M.L. et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for parkinson disease studies. Brain Res 1337:85–94. doi: 10.1016/j.brainres.2010.03.102 CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang L, Yu H, Zhao X et al (2010) Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int 57:547–555. doi: 10.1016/j.neuint.2010.06.021 CrossRefPubMedGoogle Scholar
  68. 68.
    Schneider L, Giordano S, Zelickson BR et al (2011) Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Rad Biol Med 51:2007–2017. doi: 10.1016/j.freeradbiomed.2011.08.030 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Encinas M, Iglesias M, Liu Y et al (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003. doi: 10.1046/j.1471-4159.2000.0750991.x CrossRefPubMedGoogle Scholar
  70. 70.
    Presgraves SP, Ahmed T, Borwege S et al (2004) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5:579–598. doi: 10.1007/BF03033178 CrossRefPubMedGoogle Scholar
  71. 71.
    Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. doi: 10.1007/978-1-62703-640-5_2 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jacobs S, Lie DC, DeCicco KL et al (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci USA 103:3902–3907. doi: 10.1073/pnas.0511294103 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765. doi: 10.1038/nrn2212 CrossRefPubMedGoogle Scholar
  74. 74.
    Goodman T, Crandall JE, Nanescu SE et al (2012) Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 22:2171–2183. doi: 10.1002/hipo.22037 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Pahlman S, Ruusala AI, Abrahamsson L et al (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolster-induced differentiation. Cell Differ 14:135–144. doi: 10.1016/0045-6039(84)90038-1 CrossRefPubMedGoogle Scholar
  76. 76.
    Lopez-Carballo G, Moreno L, Masia S et al (2002) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem 277:25297–25304. doi: 10.1074/jbc.M201869200 CrossRefPubMedGoogle Scholar
  77. 77.
    El Andaloussi-Lilja J, Lundqvist J, Forsby A (2009) TRPV1 expression and acitivity during retinoic acid-induced neuronal differentiation. Neurochem Int 55:768–774. doi: 10.1016/j.neuint.2009.07.011 CrossRefPubMedGoogle Scholar
  78. 78.
    Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response of saccharomyces cerevisiae. Mol Cell Biol 11:1062–1068. doi: 10.1128/MCB.11.2.1062 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Utans U, Behrens SE, Luhrmann R et al (1992) A splicing factor that is inactivated during in vivo heat shock is functionally equivalent to the [U4/U6.U5] triple snRNP-specific proteins. Genes Dev 6:631–641. doi: 10.1101/gad.6.4.631 CrossRefPubMedGoogle Scholar
  80. 80.
    Shin C, Feng Y, Manley JL (2004) Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427:553–558. doi: 10.1038/nature02288 CrossRefPubMedGoogle Scholar
  81. 81.
    Biamonti G, Caceres JF (2009) Cellular stress and RNA splicing. Cell Trends Biochem Sci 34:146–153. doi: 10.1016/j.tibs.2008.11.004 CrossRefPubMedGoogle Scholar
  82. 82.
    Corell RA, Gross RH (1992) Splicing thermotolerance maintains pre-mRNA transcripts in the splicing pathway during severe heat shock. Exp Cell Res 202:233–242. doi: 10.1016/0014-4827(92)90070-O CrossRefPubMedGoogle Scholar
  83. 83.
    Marin-Vänder L, Shin C, Onnekink C et al (2006) Hsp27 enhances recovery of splicing as well as rephosphorylation of Srp38 after heat shock. Mol Biol Cell 17:886–894. doi: 10.1091/mbc.E05-07-0596 CrossRefGoogle Scholar
  84. 84.
    Parag H, Raboy B, Kulka RG (1987) Effect of heat shock on protein degradation in mammalian cells—involvement in ubiquitin system. Embo J 6:55–61PubMedPubMedCentralGoogle Scholar
  85. 85.
    Lam YW, Lamond AI, Mann M et al (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curt Biol 17:749–760. doi: 10.1016/j.cub.2007.03.064 CrossRefGoogle Scholar
  86. 86.
    Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227. doi: 10.1016/j.molcel.2010.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hetman M, Pietrzak M (2012) Emerging roles of the neuronal nucleolus. Trends Neurosci 35:305–314. doi: 10.1016/j.tins.2012.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pickard AJ, Bierbach U (2013) The cell’s nucleolus: an emerging target for chemotherapeutic intervention. Chemmedchem 8:1441–1449. doi: 10.1002/cmdc.201300262 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Cooper GM (2000) The cell: a molecular approach. Sinauer Associates.
  90. 90.
    MacKenzie TN, Mujumdar N, Sulagna B et al (2013) Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol Cancer Ther 12:1266–1275. doi: 10.1158/1535-7163.MCT-12-1231 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Yan X, Ke X, Zhao H et al (2015) Triptolide inhibits cell proliferation and tumorigenicity of human neuroblastoma cells. Mol Med Rep 11:791–796. doi: 10.3892/mmr.2014.2814 PubMedGoogle Scholar
  92. 92.
    Patil S, Lis LG, Schumacher RJ et al (2015) Phosphonooxymethyl prodrug of triptolide: synthesis, physicochemical characterization, and efficacy in human colon adenocarcinoma and ovarian cancer xenografts. J Med Chem 58:9334–9344. doi: 10.1021/acs.jmedchem.5b01329 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Shorbagi S, Brown IR (2016) Dynamics of the association of heat shock protein HSPA6 (HSP70B′) and HSPA1A (Hsp70-1) with stress sensitive cytoplasmic and nuclear structures in differentiated human neuronal cells. Cell Stress Chaperon. doi: 10.1007/s12192-016-0724-2 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biological Sciences, Centre for the Neurobiology of StressUniversity of Toronto ScarboroughTorontoCanada

Personalised recommendations