Skip to main content
Log in

Increased Expression of Slit2 and its Robo Receptors During Astroglial Scar Formation After Transient Focal Cerebral Ischemia in Rats

Neurochemical Research Aims and scope Submit manuscript

Abstract

Slit2, a secreted glycoprotein, has recently been implicated in the post-ischemic astroglial reaction. The objective of this study was to investigate the temporal changes and cellular localization of Slit2 and its receptors, Robo1, Robo2, and Robo4, in a rat transient focal ischemia model induced by middle cerebral artery occlusion. We used double- and triple-immunolabeling to determine the cell-specific changes in Slit2 and its receptors during a 10-week post-ischemia period. The expression profiles of Slit2 and the Robo receptors shared overlapping expression patterns in sham-operated and ischemic striatum. Constitutive expression of Slit2 and Robo receptors was observed in striatal neurons with weak intensity, whereas in rats reperfused after ischemic insults, these immunoreactivities were increased in reactive astrocytes. Astroglial induction of Slit2 and Robo in the peri-infarct region was distinct on days 7–14 after reperfusion and thereafter increased progressively throughout the 10-week experimental period. Slit2 and Robo were prominently expressed in the perinuclear cytoplasm and main processes of reactive astrocytes forming the astroglial scar. This observation was confirmed by quantification of the mean fluorescence intensity of Slit2 and Robo receptors over reactive astrocytes localized at the edge of the infarct area. However, activated microglia/macrophages in the peri-infarct area were devoid of any specific labeling for Slit2 and Robo. Thus, our data revealed a selective and sustained induction of Slit2 and Robo in astrocytes localized throughout the astroglial scar after ischemic stroke, suggesting that Slit2/Robo signaling participates in glial scar formation and brain remodeling following ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

Robo:

Roundabout

MCAO:

Middle cerebral artery occlusion

GFAP:

Glial fibrillary acidic protein

Iba1:

Ionized calcium-binding adaptor molecule 1

NeuN:

Neuronal nuclear antigen

CNS:

Central nervous system

PB:

Phosphate buffer

FJB:

Fluoro-Jade B

DARPP-32:

Dopamine- and cyclic AMP-regulated phosphoprotein, apparent molecular weight 32 kDa

References

  1. Battye R, Stevens A, Jacobs JR (1999) Axon repulsion from the midline of the Drosophila CNS requires slit function. Development 126:2475–2481

    CAS  PubMed  Google Scholar 

  2. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Chopp M (1999) Temporal profile of nestin expression after focal cerebral ischemia in adult rat. Brain Res 838:1–10

    Article  CAS  PubMed  Google Scholar 

  4. Rajagopalan S, Nicolas E, Vivancos V, Berger J, Dickson BJ (2000) Crossing the midline: roles and regulation of Robo receptors. Neuron 28:767–777

    Article  CAS  PubMed  Google Scholar 

  5. Rajagopalan S, Vivancos V, Nicolas E, Dickson BJ (2000) Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103:1033–1045

    Article  CAS  PubMed  Google Scholar 

  6. Simpson JH, Bland KS, Fetter RD, Goodman CS (2000) Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell 103:1019–1032

    Article  CAS  PubMed  Google Scholar 

  7. Simpson JH, Kidd T, Bland KS, Goodman CS (2000) Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 28:753–766

    Article  CAS  PubMed  Google Scholar 

  8. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79:547–552. doi:10.1006/geno.2002.6745

    Article  CAS  PubMed  Google Scholar 

  9. Itoh A, Miyabayashi T, Ohno M, Sakano S (1998) Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res Mol Brain Res 62:175–186

    Article  CAS  PubMed  Google Scholar 

  10. Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215

    Article  CAS  PubMed  Google Scholar 

  11. Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H, Erskine L, Murakami F, Parnavelas JG (2008) The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 313:648–658. doi:10.1016/j.ydbio.2007.10.052

    Article  CAS  PubMed  Google Scholar 

  12. Andrews WD, Barber M, Parnavelas JG (2007) Slit-Robo interactions during cortical development. J Anat 211:188–198. doi:10.1111/j.1469-7580.2007.00750.x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cariboni A, Andrews WD, Memi F, Ypsilanti AR, Zelina P, Chedotal A, Parnavelas JG (2012) Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development 139:3326–3331. doi:10.1242/dev.079418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cayre M, Canoll P, Goldman JE (2009) Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 88:41–63. doi:10.1016/j.pneurobio.2009.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A (2002) Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 442:130–155

    Article  PubMed  Google Scholar 

  16. Altay T, McLaughlin B, Wu JY, Park TS, Gidday JM (2007) Slit modulates cerebrovascular inflammation and mediates neuroprotection against global cerebral ischemia. Exp Neurol 207:186–194. doi:10.1016/j.expneurol.2007.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao XC, Zhang LM, Li Q, Tong DY, Fan LC, An P, Wu XY, Chen WM, Zhao P, Wang J (2013) Isoflurane post-conditioning protects primary cultures of cortical neurons against oxygen and glucose deprivation injury via upregulation of Slit2/Robo1. Brain Res 1537:283–289. doi:10.1016/j.brainres.2013.08.036

    Article  CAS  PubMed  Google Scholar 

  18. Hagino S, Iseki K, Mori T, Zhang Y, Hikake T, Yokoya S, Takeuchi M, Hasimoto H, Kikuchi S, Wanaka A (2003) Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia 42:130–138. doi:10.1002/glia.10207

    Article  PubMed  Google Scholar 

  19. Fang M, Liu GW, Pan YM, Shen L, Li CS, Xi ZQ, Xiao F, Wang L, Chen D, Wang XF (2010) Abnormal expression and spatiotemporal change of Slit2 in neurons and astrocytes in temporal lobe epileptic foci: a study of epileptic patients and experimental animals. Brain Res 1324:14–23. doi:10.1016/j.brainres.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  20. Park JH, Pak HJ, Riew TR, Shin YJ, Lee MY (2016) Increased expression of Slit2 and its receptors Robo1 and Robo4 in reactive astrocytes of the rat hippocampus after transient forebrain ischemia. Brain Res 1634:45–56. doi:10.1016/j.brainres.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  21. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71:107–113. doi:10.1016/j.neures.2011.06.004

    Article  PubMed  Google Scholar 

  22. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286. doi:10.1002/glia.20205

    Article  PubMed  Google Scholar 

  23. Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12. doi:10.1161/strokeaha.108.533166

    Article  PubMed  Google Scholar 

  24. Liu JB, Jiang YQ, Gong AH, Zhang ZJ, Jiang Q, Chu XP (2011) Expression of Slit2 and Robo1 after traumatic lesions of the rat spinal cord. Acta Histochem 113:43–48. doi:10.1016/j.acthis.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  25. Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261:251–267

    Article  CAS  PubMed  Google Scholar 

  26. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  27. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New York

    Google Scholar 

  28. Shin YJ, Choi JS, Choi JY, Hou Y, Cha JH, Chun MH, Lee MY (2010) Induction of vascular endothelial growth factor receptor-3 mRNA in glial cells following focal cerebral ischemia in rats. J Neuroimmunol 229:81–90. doi:10.1016/j.jneuroim.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  29. Walaas SI, Aswad DW, Greengard P (1983) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301:69–71

    Article  CAS  PubMed  Google Scholar 

  30. Chu X, Fu X, Zou L, Qi C, Li Z, Rao Y, Ma K (2007) Oncosis, the possible cell death pathway in astrocytes after focal cerebral ischemia. Brain Res 1149:157–164. doi:10.1016/j.brainres.2007.02.061

    Article  CAS  PubMed  Google Scholar 

  31. Liu D, Smith CL, Barone FC, Ellison JA, Lysko PG, Li K, Simpson IA (1999) Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res Mol Brain Res 68:29–41

    Article  CAS  PubMed  Google Scholar 

  32. Dai CF, Jiang YZ, Li Y, Wang K, Liu PS, Patankar MS, Zheng J (2011) Expression and roles of Slit/Robo in human ovarian cancer. Histochem Cell Biol 135:475–485. doi:10.1007/s00418-011-0806-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pilling D, Zheng Z, Vakil V, Gomer RH (2014) Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis. Proc Natl Acad Sci USA 111:18291–18296. doi:10.1073/pnas.1417426112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Camurri L, Mambetisaeva E, Davies D, Parnavelas J, Sundaresan V, Andrews W (2005) Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Mol Cell Neurosci 30:485–493. doi:10.1016/j.mcn.2005.07.014

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Patel K, Schmidt H, Andrews W, Pini A, Sundaresan V (2004) Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci 26:232–240. doi:10.1016/j.mcn.2004.01.002

    Article  CAS  PubMed  Google Scholar 

  36. Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V (2005) Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn 233:41–51. doi:10.1002/dvdy.20324

    Article  CAS  PubMed  Google Scholar 

  37. Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP (2005) Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 332:533–541. doi:10.1016/j.bbrc.2005.03.250

    Article  CAS  PubMed  Google Scholar 

  38. Huang L, Yu W, Li X, Niu L, Li K, Li J (2009) Robo1/robo4: different expression patterns in retinal development. Exp Eye Res 88:583–588. doi:10.1016/j.exer.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  39. Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244. doi:10.1016/j.nbd.2015.05.003

    Article  PubMed  Google Scholar 

  40. Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regen Res 9:2048–2052. doi:10.4103/1673-5374.147929

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cho HJ, Sajja VS, Vandevord PJ, Lee YW (2013) Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 253:9–20. doi:10.1016/j.neuroscience.2013.08.037

    Article  CAS  PubMed  Google Scholar 

  42. Jorgensen MB, Finsen BR, Jensen MB, Castellano B, Diemer NH, Zimmer J (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol 120:70–88. doi:10.1006/exnr.1993.1041

    Article  CAS  PubMed  Google Scholar 

  43. Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G (2012) Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 349:169–180. doi:10.1007/s00441-012-1336-5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schmidt-Kastner R, Szymas J (1990) Immunohistochemistry of glial fibrillary acidic protein, vimentin and S-100 protein for study of astrocytes in hippocampus of rat. J Chem Neuroanat 3:179–192

    CAS  PubMed  Google Scholar 

  45. Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist 18:567–588. doi:10.1177/1073858411423441

    Article  PubMed  Google Scholar 

  46. Duggal N, Schmidt-Kastner R, Hakim AM (1997) Nestin expression in reactive astrocytes following focal cerebral ischemia in rats. Brain Res 768:1–9

    Article  CAS  PubMed  Google Scholar 

  47. Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12:79–90

    Article  CAS  PubMed  Google Scholar 

  48. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481. doi:10.1038/sj.jcbfm.9600546

    Article  PubMed  Google Scholar 

  49. Wehrle R, Camand E, Chedotal A, Sotelo C, Dusart I (2005) Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions. Eur J Neurosci 22:2134–2144. doi:10.1111/j.1460-9568.2005.04419.x

    Article  PubMed  Google Scholar 

  50. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186. doi:10.1017/s1740925x06000202

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410. doi:10.1523/jneurosci.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bacon C, Endris V, Andermatt I, Niederkofler V, Waltereit R, Bartsch D, Stoeckli ET, Rappold G (2011) Evidence for a role of srGAP3 in the positioning of commissural axons within the ventrolateral funiculus of the mouse spinal cord. PLoS One 6:e19887. doi:10.1371/journal.pone.0019887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bacon C, Endris V, Rappold GA (2013) The cellular function of srGAP3 and its role in neuronal morphogenesis. Mech Dev 130:391–395. doi:10.1016/j.mod.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  54. Wong K, Park HT, Wu JY, Rao Y (2002) Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev 12:583–591

    Article  CAS  PubMed  Google Scholar 

  55. Chaturvedi S, Yuen DA, Bajwa A, Huang YW, Sokollik C, Huang L, Lam GY, Tole S, Liu GY, Pan J, Chan L, Sokolskyy Y, Puthia M, Godaly G, John R, Wang C, Lee WL, Brumell JH, Okusa MD, Robinson LA (2013) Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J Am Soc Nephrol 24:1274–1287. doi:10.1681/asn.2012090890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu H, Nakazawa T, Tezuka T, Yamamoto T (2006) Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP. J Biol Chem 281:23611–23619. doi:10.1074/jbc.M511205200

    Article  CAS  PubMed  Google Scholar 

  57. Mertsch S, Schmitz N, Jeibmann A, Geng JG, Paulus W, Senner V (2008) Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. J Neurooncol 87:1–7. doi:10.1007/s11060-007-9484-2

    Article  CAS  PubMed  Google Scholar 

  58. Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Z, Zhang X, Rao Y (2001) The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410:948–952. doi:10.1038/35073616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT, and future Planning (NRF-2014R1A2A1A11050246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mun-Yong Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental procedures were conducted in accordance with the Laboratory Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and the Guidelines and Policies for Rodent Survival Surgery, and were approved by the IACUC (Institutional Animal Care and Use Committee) at the College of Medicine, The Catholic University of Korea (Approval Number: CUMC-2015-0213-01). All efforts were made to minimize animal suffering and to reduce the number of animals used.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Supplementary material 2 (TIF 8381 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Shin, YJ., Riew, TR. et al. Increased Expression of Slit2 and its Robo Receptors During Astroglial Scar Formation After Transient Focal Cerebral Ischemia in Rats. Neurochem Res 41, 3373–3385 (2016). https://doi.org/10.1007/s11064-016-2072-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2072-0

Keywords

Navigation