Advertisement

Neurochemical Research

, Volume 42, Issue 1, pp 283–293 | Cite as

CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation

  • Aaron Long
  • Ji H. Park
  • Nina Klimova
  • Carol Fowler
  • David J. Loane
  • Tibor KristianEmail author
Original Paper

Abstract

Several enzymes in cellular bioenergetics metabolism require NAD+ as an essential cofactor for their activity. NAD+ depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD+ consuming enzyme CD38. CD38 is an NAD+ glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD+ levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD+ catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD+ metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD+ metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

Keywords

Nicotinamide dinucleotide Poly-ADP-ribose Ischemia Damage Brain Mouse 

Notes

Acknowledgments

The project described was supported by Award Number I01BX000917 from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development to TK and by NIH/NINDS Grant R01NS082308 to D. J. L.

References

  1. 1.
    Baxter P, Chen Y, Xu Y, Swanson RA (2014) Mitochondrial dysfunction induced by nuclear poly(ADP-ribose) polymerase-1: a treatable cause of cell death in stroke. Transl Stroke Res 5:136–144CrossRefPubMedGoogle Scholar
  2. 2.
    Owens K, Park JH, Schuh R, Kristian T (2013) Mitochondrial dysfunction and NAD+ metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 4:618–634CrossRefPubMedGoogle Scholar
  3. 3.
    Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nature Rev Neurosci 15:394–409CrossRefGoogle Scholar
  4. 4.
    Schuber F, Lund FE (2004) Structure and enzymology of ADP-ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 4:249–261CrossRefPubMedGoogle Scholar
  5. 5.
    Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886CrossRefPubMedGoogle Scholar
  6. 6.
    Lee HC (2004) Multiplicity of Ca2+ messengers and Ca2+ stores: a perspective from cyclic ADP-ribose and NAADP. Curr Mol Med 4:227–237CrossRefPubMedGoogle Scholar
  7. 7.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599CrossRefPubMedGoogle Scholar
  8. 8.
    Aksoy P, White TA, Thompson M, Chini EN (2006) Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 345:1386–1392CrossRefPubMedGoogle Scholar
  9. 9.
    Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, Koch-Nolte F, Gerloff C, Magnus T (2011) CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PloS One 6:e19046CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Levy A, Bercovich-Kinori A, Alexandrovich AG, Tsenter J, Trembovler V, Lund FE, Shohami E, Stein R, Mayo L (2009) CD38 facilitates recovery from traumatic brain injury. J Neurotrauma 26:1521–1533CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kristian T, Balan I, Schuh R, Onken M (2011) Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J Neurosci Res 89:1946–1955CrossRefPubMedGoogle Scholar
  12. 12.
    Onken M, Berger S, Kristian T (2012) Simple model of forebrain ischemia in mouse. J Neurosci Methods 204:254–261CrossRefPubMedGoogle Scholar
  13. 13.
    Owens K, Park JH, Gourley S, Jones H, Kristian T (2015) Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia. J Bioenerg Biomembr 47:13–31CrossRefPubMedGoogle Scholar
  14. 14.
    Klaidman LK, Mukherjee SK, Hutchin TP, Adams JD (1996) Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide. Neurosci Lett 206:5–8CrossRefPubMedGoogle Scholar
  15. 15.
    Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP (2009) Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med 11:28–42CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu J, Stoica BA, Luo T, Sabirzhanov B, Zhao Z, Guanciale K, Nayar SK, Foss CA, Pomper MG, Faden AI (2014) Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation. Cell Cycle 13:2446–2458CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Balan IS, Fiskum G, Kristian T (2010) Visualization and quantification of NAD(H) in brain sections by a novel histo-enzymatic nitrotetrazolium blue staining technique. Brain Res 1316:112–119CrossRefPubMedGoogle Scholar
  18. 18.
    Kurinami H, Shimamura M, Ma T, Qian L, Koizumi K, Park L, Klann E, Manfredi G, Iadecola C, Zhou P (2014) Prohibitin viral gene transfer protects hippocampal CA1 neurons from ischemia and ameliorates postischemic hippocampal dysfunction. Stroke 45:1131–1138CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cozzi A, Cipriani G, Fossati S, Faraco G, Formentini L, Min W, Cortes U, Wang ZQ, Moroni F, Chiarugi A (2006) Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. J Cereb Blood Flow Metab 26:684–695CrossRefPubMedGoogle Scholar
  20. 20.
    Young GS, Choleris E, Lund FE, Kirkland JB (2006) Decreased cADPR and increased NAD+ in the CD38−/− mouse. Biochem Biophys Res Commun 346:188–192CrossRefPubMedGoogle Scholar
  21. 21.
    Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151CrossRefPubMedGoogle Scholar
  22. 22.
    Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095CrossRefPubMedGoogle Scholar
  23. 23.
    Brochu G, Duchaine C, Thibeault L, Lagueux J, Shah GM, Poirier GG (1994) Mode of action of poly(ADP-ribose) glycohydrolase. Biochim Biophys Acta 1219:342–350CrossRefPubMedGoogle Scholar
  24. 24.
    Davidovic L, Vodenicharov M, Affar EB, Poirier GG (2001) Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268:7–13CrossRefPubMedGoogle Scholar
  25. 25.
    Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297:521–532CrossRefPubMedGoogle Scholar
  26. 26.
    Brochu G, Shah GM, Poirier GG (1994) Purification of poly(ADP-ribose) glycohydrolase and detection of its isoforms by a zymogram following one- or two-dimensional electrophoresis. Anal Biochem 218:265–272CrossRefPubMedGoogle Scholar
  27. 27.
    Di Meglio S, Denegri M, Vallefuoco S, Tramontano F, Scovassi AI, Quesada P (2003) Poly(ADPR) polymerase-1 and poly(ADPR) glycohydrolase level and distribution in differentiating rat germinal cells. Mol Cell Biochem 248:85–91CrossRefPubMedGoogle Scholar
  28. 28.
    Winstall E, Affar EB, Shah R, Bourassa S, Scovassi AI, Poirier GG (1999) Poly(ADP-ribose) glycohydrolase is present and active in mammalian cells as a 110-kDa protein. Exp Cell Res 246:395–398CrossRefPubMedGoogle Scholar
  29. 29.
    Poitras MF, Koh DW, Yu SW, Andrabi SA, Mandir AS, Poirier GG, Dawson VL, Dawson (2007) Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain. Neuroscience 148:198–211CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alvarez-Gonzalez R, Althaus FR (1989) Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 218:67–74CrossRefPubMedGoogle Scholar
  31. 31.
    Burns DM, Ying W, Kauppinen, Zhu K, Swanson RA (2009) Selective down-regulation of nuclear poly(ADP-ribose) glycohydrolase. PloS One 4:e4896CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Oei SL, Ziegler M (2000) ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J Biol Chem 275:23234–23239PubMedGoogle Scholar
  33. 33.
    Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103:18308–18313CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aaron Long
    • 1
  • Ji H. Park
    • 1
  • Nina Klimova
    • 2
  • Carol Fowler
    • 1
  • David J. Loane
    • 2
  • Tibor Kristian
    • 1
    • 2
    Email author
  1. 1.Veterans Affairs Maryland Health Care SystemBaltimoreUSA
  2. 2.Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology ResearchSchool of Medicine, University of MarylandBaltimoreUSA

Personalised recommendations