Krall RL, Penry JK, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: I. History and a program for progress. Epilepsia 19:393–408
CAS
Article
PubMed
Google Scholar
Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19:409–428
CAS
Article
PubMed
Google Scholar
Gladding GD, Kupferberg HJ, Swinyard EA (1985) Antiepileptic drug development program. In: Frey H-H, Janz D (eds) Antiepileptic drugs. Springer, Berlin, pp 341–350
Google Scholar
White HS, Wolf HH, Woodhead JH, Kupferberg HJ (1998) The National Institutes of Health Anticonvulsant Drug Development Program: screening for efficacy. Adv Neurol 76:29–39
CAS
PubMed
Google Scholar
Wilcox KS, Dixon-Salazar T, Sills GJ, Ben Menachem E, White HS, Porter RJ, Dichter MA, Moshe SL, Noebels JL, Privitera MD, Rogawski MA (2013) Issues related to development of new antiseizure treatments. Epilepsia 54(Suppl 4):24–34
Article
PubMed
PubMed Central
Google Scholar
French JA, White HS, Klitgaard H, Holmes GL, Privitera MD, Cole AJ, Quay E, Wiebe S, Schmidt D, Porter RJ, Arzimanoglou A, Trinka E, Perucca E (2013) Development of new treatment approaches for epilepsy: unmet needs and opportunities. Epilepsia 54(Suppl 4):3–12
CAS
Article
PubMed
Google Scholar
Löscher W, Schmidt D (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52:657–678
Article
PubMed
Google Scholar
Löscher W (2016) Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res. doi:10.1016/j.eplepsyres.2016.05.016
Google Scholar
Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368
Article
PubMed
Google Scholar
White HS, Smith-Yockman M, Srivastava A, Wilcox KS (2006) Therapeutic assays for the identification and characterization of antiepileptic and antiepileptogenic drugs. In: Pitkänen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier, Amsterdam, pp 539–549
Chapter
Google Scholar
Blanco MM, Dos SJ Jr, Perez-Mendes P, Kohek SR, Cavarsan CF, Hummel M, Albuquerque C, Mello LE (2009) Assessment of seizure susceptibility in pilocarpine epileptic and nonepileptic Wistar rats and of seizure reinduction with pentylenetetrazole and electroshock models. Epilepsia 50:824–831
CAS
Article
PubMed
Google Scholar
Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50:93–103
CAS
Article
PubMed
Google Scholar
Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157
CAS
Article
PubMed
PubMed Central
Google Scholar
Levesque M, Avoli M, Bernard C (2016) Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods 260:45–52
Article
PubMed
Google Scholar
Leite JP, Cavalheiro EA (1995) Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20:93–104
CAS
Article
PubMed
Google Scholar
Glien M, Brandt C, Potschka H, Löscher W (2002) Effects of the novel antiepileptic drug levetiracetam on spontaneous recurrent seizures in the rat pilocarpine model of temporal lobe epilepsy. Epilepsia 43:350–357
CAS
Article
PubMed
Google Scholar
Bankstahl M, Bankstahl JP, Löscher W (2012) Inter-individual variation in the anticonvulsant effect of phenobarbital in the pilocarpine rat model of temporal lobe epilepsy. Exp Neurol 234:70–84
CAS
Article
PubMed
Google Scholar
Stables JP, Bertram E, Dudek FE, Holmes G, Mathern G, Pitkänen A, White HS (2003) Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: summary of the NIH/NINDS/AES models II workshop. Epilepsia 44:1472–1478
Article
PubMed
Google Scholar
Brandt C, Volk HA, Löscher W (2004) Striking differences in individual anticonvulsant response to phenobarbital in rats with spontaneous seizures after status epilepticus. Epilepsia 45:1488–1497
CAS
Article
PubMed
Google Scholar
Bethmann K, Brandt C, Löscher W (2007) Resistance to phenobarbital extends to phenytoin in a rat model of temporal lobe epilepsy. Epilepsia 48:816–826
CAS
Article
PubMed
Google Scholar
White HS (1997) Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 38:S9–S17
CAS
Article
PubMed
Google Scholar
Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181
Article
PubMed
Google Scholar
Töllner K, Twele F, Löscher W (2016) Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures. Epilepsy Behav 57:95–104
Article
PubMed
Google Scholar
Bankstahl M, Bankstahl JP, Löscher W (2013) Pilocarpine-induced epilepsy in mice alters seizure thresholds and the efficacy of antiepileptic drugs in the 6-Hertz psychomotor seizure model. Epilepsy Res 107:205–216
CAS
Article
PubMed
Google Scholar
Erker T, Brandt C, Töllner K, Schreppel P, Twele F, Schidlitzki A, Löscher W (2016) The bumetanide prodrug BUM5, but not bumetanide, potentiates the anti-seizure effect of phenobarbital in adult epileptic mice. Epilepsia 57:698–705
CAS
Article
PubMed
Google Scholar
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15:637–654
CAS
Article
PubMed
PubMed Central
Google Scholar
Li X, Zhou J, Chen Z, Chen S, Zhu F, Zhou L (2008) Long-term expressional changes of Na+ -K+ -Cl- co-transporter 1 (NKCC1) and K+ -Cl- co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE). Brain Res 1221:141–146
CAS
Article
PubMed
Google Scholar
Cleary RT, Sun H, Huynh T, Manning SM, Li Y, Rotenberg A, Talos DM, Kahle KT, Jackson M, Rakhade SN, Berry G, Jensen FE (2013) Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS One 8:e57148
CAS
Article
PubMed
PubMed Central
Google Scholar
Töllner K, Brandt C, Töpfer M, Brunhofer G, Erker T, Gabriel M, Feit PW, Lindfors J, Kaila K, Löscher W (2014) A novel prodrug-based strategy to increase effects of bumetanide in epilepsy. Ann Neurol 75:550–562
Article
PubMed
Google Scholar
Brandt C, Nozadze M, Heuchert N, Rattka M, Löscher W (2010) Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J Neurosci 30:8602–8612
CAS
Article
PubMed
Google Scholar
Löscher W, Hönack D (1991) Responses to NMDA receptor antagonists altered by epileptogenesis. Trends Pharmacol Sci 12:52
Article
PubMed
Google Scholar
Hönack D, Löscher W (1995) Kindling increases the sensitivity of rats to adverse effects of certain antiepileptic drugs. Epilepsia 36:763–771
Article
PubMed
Google Scholar
Löscher W, Schmidt D (1994) Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res 17:95–134
Article
PubMed
Google Scholar
Klitgaard H, Matagne A, Lamberty Y (2002) Use of epileptic animals for adverse effect testing. Epilepsy Res 50:55–65
CAS
Article
PubMed
Google Scholar
Löscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov 12:757–776
Article
PubMed
Google Scholar
Toman JEP (1951) Neuropharmacologic Considerations in Psychic Seizures. Neurology 1:444–460
CAS
Article
PubMed
Google Scholar
Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “pychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107:273–283
CAS
PubMed
Google Scholar
Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–228
CAS
Article
PubMed
Google Scholar
Leclercq K, Kaminski RM (2015) Genetic background of mice strongly influences treatment resistance in the 6 Hz seizure model. Epilepsia 56:310–318
CAS
Article
PubMed
Google Scholar
Leclercq K, Kaminski RM (2015) Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 49:55–60
Article
PubMed
Google Scholar
Deutsch SI, Mastropaolo J, Riggs RL, Rosse RB (1997) The antiseizure efficacies of MK-801, phencyclidine, ketamine, and memantine are altered selectively by stress. Pharmacol Biochem Behav 58:709–712
CAS
Article
PubMed
Google Scholar
Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22:3795–3805
CAS
PubMed
Google Scholar
Joels M (2009) Stress, the hippocampus, and epilepsy. Epilepsia 50:586–597
Article
PubMed
Google Scholar
Riban V, Bouilleret V, Pham L, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112:101–111
CAS
Article
PubMed
Google Scholar
Klein S, Bankstahl M, Löscher W (2015) Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 90:53–62
CAS
Article
PubMed
Google Scholar
Duveau V, Pouyatos B, Bressand K, Bouyssieres C, Chabrol T, Roche Y, Depaulis A, Roucard C (2016) Differential effects of antiepileptic drugs on focal seizures in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci Ther 22:497–506
CAS
Article
PubMed
Google Scholar
Pontes JCC, Lima TZ, Queiroz CM, Cinini SM, Blanco MM, Mello LE (2016) Seizures triggered by pentylenetetrazol in marmosets made chronically epileptic with pilocarpine show greater refractoriness to treatment. Epilepsy Res 126:16-25
CAS
Article
PubMed
Google Scholar
Perez-Mendes P, Blanco MM, Calcagnotto ME, Cinini SM, Bachiega J, Papoti D, Covolan L, Tannus A, Mello LE (2011) Modeling epileptogenesis and temporal lobe epilepsy in a non-human primate. Epilepsy Res 96:45–57
CAS
Article
PubMed
Google Scholar
Smith M, Wilcox KS, White HS (2007) Discovery of antiepileptic drugs. Neurother 4:12–17
CAS
Article
Google Scholar
Czuczwar SJ, Turski L, Turski W, Kleinrok Z (1981) Effects of some antiepileptic drugs in pentetrazol-induced convulsions in mice lesioned with kainic acid. Epilepsia 22:407–414
CAS
Article
PubMed
Google Scholar
Czuczwar SJ, Turski L, Kleinrok Z (1982) Anticonvulsant action of phenobarbital, diazepam, carbamazepine, and diphenylhydantoin in the electroshock test in mice after lesion of hippocampal pyramidal cells with intracerebroventricular kainic acid. Epilepsia 23:377–382
CAS
Article
PubMed
Google Scholar
Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330
CAS
Article
PubMed
Google Scholar
Sato M, Racine RJ, McIntyre DC (1990) Kindling: basic mechanisms and clinical validity. Electroenceph Clin Neurophysiol 76:459–472
CAS
Article
PubMed
Google Scholar
Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258
Article
PubMed
Google Scholar
Löscher W, Jäckel R, Czuczwar SJ (1986) Is amygdala kindling in rats a model for drug-resistant partial epilepsy? Exp Neurol 93:211–226
Article
PubMed
Google Scholar
Löscher W, Hönack D (1993) Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 232:147–158
Article
PubMed
Google Scholar
Klitgaard, H., and Verdru, P. 2007. Levetiracetam: the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discov 2:1537–1545.
CAS
Article
PubMed
Google Scholar
Klitgaard H (2001) Levetiracetam: the preclinical profile of a new class of antiepileptic drugs? Epilepsia 42(Suppl 4):13–18
Article
PubMed
Google Scholar
Löscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123
Article
PubMed
Google Scholar
White HS, Wolf HH, Swinyard EA, Skeen GA, Sofia RD (1992) A neuropharmacological evaluation of felbamate as a novel anticonvulsant. Epilepsia 33:564–572
CAS
Article
PubMed
Google Scholar
Matagne A, Klitgaard H (1998) Validation of corneally kindled mice: a sensitive screening model for partial epilepsy in man. Epilepsy Res 31:59–71
CAS
Article
PubMed
Google Scholar
Potschka H, Löscher W (1999) Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling. Epilepsy Res 37:109–120
CAS
Article
PubMed
Google Scholar
Rowley NM, White HS (2010) Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: correlation with other seizure and epilepsy models. Epilepsy Res 92:163–169
CAS
Article
PubMed
Google Scholar
Leclercq K, Matagne A, Kaminski RM (2014) Low potency and limited efficacy of antiepileptic drugs in the mouse 6 Hz corneal kindling model. Epilepsy Res 108:675–683
CAS
Article
PubMed
Google Scholar
Jobe PC, Mishra PK, Ludvig N, Dailey JW (1991) Scope and contribution of genetic models to an understanding of the epilepsies. Crit Rev Neurobiol 6:183–220
CAS
PubMed
Google Scholar
Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods Find Exp Clin Pharmacol 6:531–547
PubMed
Google Scholar
Löscher W, Meldrum BS (1984) Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed Proc 43:276–284
PubMed
Google Scholar
Naquet RG, Valin A (1998) Experimental models of reflex epilepsy. Adv Neurol 75:15–28
CAS
PubMed
Google Scholar
Seyfried TN, Todorova MT, Poderycki MJ (1999) Experimental models of multifactorial epilepsies: the EL mouse and mice susceptible to audiogenic seizures. Adv Neurol 79:279–290
CAS
PubMed
Google Scholar
De Sarro G, Russo E, Citraro R, Meldrum BS (2015) Genetically epilepsy-prone rats (GEPRs) and DBA/2 mice: two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs. Epilepsy Behav. doi:10.1016/j.yebeh.2015.06.030
PubMed
Google Scholar
Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneimittelforschung 34:1261–1270
CAS
PubMed
Google Scholar
Ferraro TN, Golden GT, Snyder R, Laibinis M, Smith GG, Buono RJ, Berrettini WH (1998) Genetic influences on electrical seizure threshold. Brain Res 813:207–210
CAS
Article
PubMed
Google Scholar
Chaix Y, Ferraro TN, Lapouble E, Martin B (2007) Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis? Epilepsia 48(Suppl 5):48–52
Article
PubMed
Google Scholar
Dailey JW, Jobe PC (1985) Anticonvulsant drugs and the genetically epilepsy-prone rat. Fed Proc 44:2640–2644
CAS
PubMed
Google Scholar
Striano S, Coppola A, del Gaudio L, Striano P (2012) Reflex seizures and reflex epilepsies: old models for understanding mechanisms of epileptogenesis. Epilepsy Res 100:1–11
Article
PubMed
Google Scholar
Depaulis A, David O, Charpier S (2016) The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 260:159–174
Article
PubMed
Google Scholar
Brailowsky S, Montiel T, Boehrer A, Marescaux C, Vergnes M (1999) Susceptibility to focal and generalized seizures in Wistar rats with genetic absence-like epilepsy. Neuroscience 93:1173–1177
CAS
Article
PubMed
Google Scholar
Eskazan E, Onat FY, Aker R, Oner G (2002) Resistance to propagation of amygdaloid kindling seizures in rats with genetic absence epilepsy. Epilepsia 43:1115–1119
Article
PubMed
Google Scholar
Frankel WN (2009) Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet 25:361–367
CAS
Article
PubMed
PubMed Central
Google Scholar
Otto JF, Singh NA, Dahle EJ, Leppert MF, Pappas CM, Pruess TH, Wilcox KS, White HS (2009) Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions. Epilepsia 50:1752–1759
CAS
Article
PubMed
Google Scholar
Baraban SC, Löscher W (2014) What new modeling approaches will help us identify promising drug treatments? Adv Exp Med Biol 813:283–294
Article
PubMed
Google Scholar
Grone BP, Baraban SC (2015) Animal models in epilepsy research: legacies and new directions. Nat Neurosci 18:339–343
CAS
Article
PubMed
Google Scholar
Bialer, M., White, H.S (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9:68–82
CAS
Article
PubMed
Google Scholar