Skip to main content
Log in

MARK2 Rescues Nogo-66-Induced Inhibition of Neurite Outgrowth via Regulating Microtubule-Associated Proteins in Neurons In Vitro

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The ability of neurons in the adult mammalian central nervous system (CNS) to regenerate after injury is limited by inhibitors in CNS myelin. Nogo-66 is the most important myelin inhibitor but the mechanisms of Nogo-66 inhibition of neurite outgrowth remain poorly understood. Particularly, the relationship between Nogo-66 and microtubule-affinity regulating kinase 2 (MARK2) has not been examined. This study investigated the role of MARK2 in Nogo-66 inhibition and the function of MARK2 in neurite elongation in neurons in vitro. MARK2 and phosphorylated MARK2 at Ser212 (p-Ser212) alterations in Neuro 2a cells were assessed at different Nogo-66 exposure times; the relationships between MARK2 and microtubule-associated proteins (MAPs) were determined via the overexpression or interference of MARK2. Our study reports that Nogo-66 inhibited the expression of total MARK2 but also reduced Ser212 phosphorylation of MARK2, whereas levels of MAP1-b and tau varied depending on MARK2 overexpression or reduced expression. Furthermore, MARK2 increased the proportion of tyrosinated α-tubulin, thereby disrupting the stability of tubulin, most likely affecting axonal growth. In line with these results, overexpression of MARK2 promoted neurite elongation and therefore is able to rescue the inhibitory effect of Nogo-66 on neurite growth. In conclusion, the intracellular PKB/MARK2/MAPs/α-tubulin pathway appears to be essential for neurite elongation in neurons in vitro. These results suggest a critical role for MARK2 in overcoming Nogo-66-induced inhibition of axon outgrowth in neurons. Pharmacological activators of MARK2 may be applicable to promote successful axonal outgrowth following many types of CNS injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bradbury EJ, McMahon SB (2006) Spinal cord repair strategies: why do they work? Nat Rev Neurosci 7:644–653

    Article  CAS  PubMed  Google Scholar 

  2. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    Article  CAS  PubMed  Google Scholar 

  4. Gonzenbach RR, Schwab ME (2008) Disinhibition of neurite growth to repair the injured adult CNS: focusing on Nogo. Cell Mol Life Sci 65:161–176

    Article  CAS  PubMed  Google Scholar 

  5. Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J (2004) Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 24:6531–6539

    Article  CAS  PubMed  Google Scholar 

  6. Lu P, Tuszynski MH (2008) Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol 209:313–320

    Article  CAS  PubMed  Google Scholar 

  7. Hou S, Nicholson L, van Niekerk E, Motsch M, Blesch A (2012) Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery. J Neurosci 32:13206–13220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  CAS  PubMed  Google Scholar 

  9. Kottis V, Thibault P, Mikol D, Xiao ZC, Zhang R, Dergham P, Braun PE (2002) Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem 82:1566–1569

    Article  CAS  PubMed  Google Scholar 

  10. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    Article  CAS  PubMed  Google Scholar 

  11. Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 11:799–811

    Article  CAS  PubMed  Google Scholar 

  12. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346

    Article  CAS  PubMed  Google Scholar 

  13. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551

    Article  CAS  PubMed  Google Scholar 

  14. Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–970

    Article  CAS  PubMed  Google Scholar 

  15. Boomkamp SD, Riehle MO, Wood J, Olson MF, Barnett SC (2012) The development of a rat in vitro model of spinal cord injury demonstrating the additive effects of Rho and ROCK inhibitors on neurite outgrowth and myelination. Glia 60:441–456

    Article  PubMed  Google Scholar 

  16. Geoffroy CG, Zheng B (2014) Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 27:31–38

    Article  CAS  PubMed  Google Scholar 

  17. Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27:53–60

    Article  CAS  PubMed  Google Scholar 

  18. Shen JY, Yi XX, Xiong NX, Wang HJ, Duan XW, Zhao HY (2011) GSK-3beta activation mediates Nogo-66-induced inhibition of neurite outgrowth in N2a cells. Neurosci Lett 505:165–170

    Article  CAS  PubMed  Google Scholar 

  19. Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    Article  CAS  PubMed  Google Scholar 

  20. Chen YM, Wang QJ, Hu HS, Yu PC, Zhu J, Drewes G, Piwnica-Worms H, Luo ZG (2006) Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA 103:8534–8539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshida H, Goedert M (2012) Phosphorylation of microtubule-associated protein tau by AMPK-related kinases. J Neurochem 120:165–176

    Article  CAS  PubMed  Google Scholar 

  22. Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89:297–308

    Article  CAS  PubMed  Google Scholar 

  23. Marx A, Nugoor C, Panneerselvam S, Mandelkow E (2010) Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24: 1637–1648

    Article  CAS  PubMed  Google Scholar 

  24. Lin J, Hou KK, Piwnica-Worms H, Shaw AS (2009) The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J Immunol 183:1215–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu H, Murata-Kamiya N, Saito Y, Hatakeyama M (2009) Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J Biol Chem 284:23024–23036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matenia D, Hempp C, Timm T, Eikhof A, Mandelkow EM (2012) Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport. J Biol Chem 287:8174–8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matenia D, Mandelkow EM (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34:332–342

    Article  CAS  PubMed  Google Scholar 

  28. Gu GJ, Wu D, Lund H, Sunnemark D, Kvist AJ, Milner R, Eckersley S, Nilsson LN, Agerman K, Landegren U, Kamali-Moghaddam M (2013) Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. J Alzheimers Dis 33:699–713

    CAS  PubMed  Google Scholar 

  29. Matenia D, Mandelkow EM (2014) Emerging modes of PINK1 signaling: another task for MARK2. Front Mol Neurosci 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  30. Biernat J, Wu YZ, Timm T, Zheng-Fischhofer Q, Mandelkow E, Meijer L, Mandelkow EM (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13:4013–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fekete CD, Chiou TT, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL (2015) In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: differential effects on GABAergic synapses and neuronal migration. J Comp Neurol 523:1359–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cassimeris L, Guglielmi L, Denis V, Larroque C, Martineau P (2013) Specific in vivo labeling of tyrosinated alpha-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PLoS One 8:e59812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D, Hamers FP, Schwab ME (2005) Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol 58:706–719

    Article  CAS  PubMed  Google Scholar 

  34. Merkler D, Metz GA, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 21:3665–3673

    CAS  PubMed  Google Scholar 

  35. McKerracher L, Rosen KM (2015) MAG, myelin and overcoming growth inhibition in the CNS. Front Mol Neurosci 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  36. Plemel JR, Manesh SB, Sparling JS, Tetzlaff W (2013) Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia 61:1471–1487

    Article  PubMed  Google Scholar 

  37. Baldwin KT, Giger RJ (2015) Insights into the physiological role of CNS regeneration inhibitors. Front Mol Neurosci 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423

    CAS  PubMed  Google Scholar 

  39. Fry EJ, Chagnon MJ, Lopez-Vales R, Tremblay ML, David S (2010) Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia 58:423–433

    PubMed  Google Scholar 

  40. Wang YT, Lu XM, Zhu F, Huang P, Yu Y, Long ZY, Wu YM (2015) Ameliorative effects of p75NTR-ED-Fc on axonal regeneration and functional recovery in spinal cord-injured rats. Mol Neurobiol 52:1821–1834

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Shen J, Xiong N, Zhao H, Chen Y (2011) Protein kinase B is involved in Nogo-66 inhibiting neurite outgrowth in PC12 cells. Neuroreport 22:733–738

    Article  CAS  PubMed  Google Scholar 

  42. Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM (2008) Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem 283:18873–18882

    Article  CAS  PubMed  Google Scholar 

  43. Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. Embo J 22:5090–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caceres A, Potrebic S, Kosik KS (1991) The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J Neurosci 11:1515–1523

    CAS  PubMed  Google Scholar 

  46. Bertrand J, Plouffe V, Senechal P, Leclerc N (2010) The pattern of human tau phosphorylation is the result of priming and feedback events in primary hippocampal neurons. Neuroscience 168:323–334

    Article  CAS  PubMed  Google Scholar 

  47. Schwalbe M, Biernat J, Bibow S, Ozenne V, Jensen MR, Kadavath H, Blackledge M, Mandelkow E, Zweckstetter M (2013) Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2. Biochemistry 52:9068–9079

    Article  CAS  PubMed  Google Scholar 

  48. Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura Y, Applegate K, Davidson MW, Danuser G, Waterman CM (2012) Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells. PLoS One 7:e41413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshimura Y, Terabayashi T, Miki H (2010) Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol Cell Biol 30:2206–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song W, Cho Y, Watt D, Cavalli V (2015) Tubulin-tyrosine ligase (TTL)-mediated increase in tyrosinated alpha-Tubulin in injured axons is required for retrograde injury signaling and axon regeneration. J Biol Chem 290:14765–14775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:362–372

    Article  CAS  PubMed  Google Scholar 

  54. Howes SC, Alushin GM, Shida T, Nachury MV, Nogales E (2014) Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 25:257–266

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peris L, Wagenbach M, Lafanechere L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Li Honglian for technical support.

Funding

This research was funded by the National Natural Science Foundation of China (81371380).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan-Xiang Xiong or Hong-Yang Zhao.

Ethics declarations

Conflict of Interest

The authors declare no competing or financial interest.

Additional information

Yu-Chao Zuo and Nan-Xiang Xiong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, YC., Xiong, NX., Shen, JY. et al. MARK2 Rescues Nogo-66-Induced Inhibition of Neurite Outgrowth via Regulating Microtubule-Associated Proteins in Neurons In Vitro. Neurochem Res 41, 2958–2968 (2016). https://doi.org/10.1007/s11064-016-2016-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2016-8

Keywords

Navigation