Skip to main content
Log in

Potentiation of Surface Stability of AMPA Receptors by Sulfhydryl Compounds: A Redox-Independent Effect by Disrupting Palmitoylation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sulfhydryl compounds such as dithiothreitol (DTT) and β-mercaptoethanol (β-ME) are widely used as redox agents. Previous studies in our group and other laboratory have reported the effect of sulfhydryl compounds on the function of glutamate receptor, including plasticity. Most of these findings have focused on the N-methyl-d-aspartic acid receptor, in contrast, very little is known about the effect of sulfhydryl compounds on α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). Here, we observed that DTT (100 μM), β-ME (200 μM) and l-cysteine (200 μM) significantly elevated the surface expression of AMPARs via reducing their palmitoylation in rat hippocampal slices in vitro. Increased surface stability of AMPARs was not be correlated with the altered redox status, because the chemical entities containing mercapto group such as penicillamine (200 μM) and 2-mercapto-1-methylimidazole (200 μM) exhibited little effects on the surface expression of AMPARs. Computing results of Asp-His-His-Cys (DHHC) 3, the main enzyme for palmitoylation of AMPARs, indicated that only the alkyl mercaptans with chain-like configuration, such as DTT and β-ME, can enter the pocket of DHHC3 and disrupt the catalytic activity via inhibiting DHHC3 auto-palmitoylation. Collectively, our findings indicate a novel redox-independent mechanism underlay the multiple effects of thiol reductants on synaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABE:

Acyl-biotin exchange

ACSF:

Artificial cerebrospinal fluid

AMPAR:

α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor

APV:

dl-2-amino-5-phosphonopentanoic acid

β-ME:

β-Mercaptoethanol

BS3 :

Bis (sulfosuccinymidal) suberate

CNS:

Central nervous system

CRD:

Cysteine-rich domain

DHHC:

Asp-His-His-Cys

DTT:

Dithiothreitol

HRP:

Horseradish peroxidase

LTP:

Long-term potentiation

MMTS:

Methylmethanethiosulfonate

NAC:

N-acetyl cysteine

NMDAR:

N-methyl-d-aspartic acid receptor

PATs:

Palmitoyl acyl transferases

PPTs:

Palmitoyl protein thioesterases

TTX:

Tetrodotoxin

References

  1. Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180

    Article  CAS  PubMed  Google Scholar 

  2. Kr zel A, Lesniak W, Jezowska-Bojczuk M, Mlynarz P, Brasun J, Kozlowski H, Bal W (2001) Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J Inorg Biochem 84:77–88

    Article  CAS  PubMed  Google Scholar 

  3. Cho JH, Askwith CC (2007) Potentiation of acid-sensing ion channels by sulfhydryl compounds. Am J Physiol Cell Physiol 292:C2161–C2174

    Article  CAS  PubMed  Google Scholar 

  4. Amato A, Connolly CN, Moss SJ, Smart TG (1999) Modulation of neuronal and recombinant GABAA receptors by redox reagents. J Physiol 517(Pt 1):35–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ullian ME, Beck CN, Walker LP, Fitzgibbon WR, Morinelli TA (2009) Thiol antioxidants regulate angiotensin II AT1 and arginine vasopressin V1 receptor functions differently in vascular smooth muscle cells. Am J Hypertens 22:221–227

    Article  CAS  PubMed  Google Scholar 

  6. Arakawa M, Ito Y (2007) N-Acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 6:308–314

    Article  CAS  PubMed  Google Scholar 

  7. Pocernich CB, Butterfield DA (2012) Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 1822:625–630

    Article  CAS  PubMed  Google Scholar 

  8. Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263

    Article  CAS  PubMed  Google Scholar 

  9. Pan ZH, Bahring R, Grantyn R, Lipton SA (1995) Differential modulation by sulfhydryl redox agents and glutathione of GABA- and glycine-evoked currents in rat retinal ganglion cells. J Neurosci 15:1384–1391

    CAS  PubMed  Google Scholar 

  10. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  CAS  PubMed  Google Scholar 

  11. Sucher NJ, Lipton SA (1991) Redox modulatory site of the NMDA receptor-channel complex: regulation by oxidized glutathione. J Neurosci Res 30:582–591

    Article  CAS  PubMed  Google Scholar 

  12. Cai F, Wang F, Lin FK, Liu C, Ma LQ, Liu J, Wu WN, Wang W, Wang JH, Chen JG (2008) Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway. Free Radic Biol Med 45:964–970

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Hu ZL, Jiang B, Ni L, Jin Y, Chen JG, Wang F (2011) Effect of chloramine-T on long-term potentiation at synapses between perforant path and dentate gyrus in hippocampus of rats in vivo. Neurotoxicology 32:199–205

    Article  CAS  PubMed  Google Scholar 

  14. Bodhinathan K, Kumar A, Foster TC (2010) Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 30:1914–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang YJ, Wu PF, Long LH, Yu DF, Wu WN, Hu ZL, Fu H, Xie N, Jin Y, Ni L, Wang JZ, Wang F, Chen JG (2010) Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function. Aging Cell 9:709–721

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Guan XL, Wu PF, Wang CM, Cao H, Li L, Guo XJ, Wang F, Xie N, Jiang FC, Chen JG (2012) Multifunctional mercapto-tacrine derivatives for treatment of age-related neurodegenerative diseases. J Med Chem 55:3588–3592

    Article  CAS  PubMed  Google Scholar 

  17. Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA (2011) Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PloS One 6:e20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herin GA, Du S, Aizenman E (2001) The neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site. J Neurochem 78:1307–1314

    Article  CAS  PubMed  Google Scholar 

  19. Lei S, McBain CJ (2004) Two loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J Neurosci 24:2112–2121

    Article  CAS  PubMed  Google Scholar 

  20. Yu SY, Wu DC, Liu L, Ge Y, Wang YT (2008) Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 106:889–899

    Article  CAS  PubMed  Google Scholar 

  21. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41

    Article  PubMed  Google Scholar 

  22. Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113

    Article  CAS  PubMed  Google Scholar 

  23. Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, Choe ES, Mao L (2005) Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol 32:237–249

    Article  CAS  PubMed  Google Scholar 

  24. Guan X, Fierke CA (2011) Understanding protein palmitoylation: biological significance and enzymology. Sci China Chem 54:1888–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang G, Xiong W, Kojic L, Cynader MS (2009) Subunit-selective palmitoylation regulates the intracellular trafficking of AMPA receptor. Eur J Neurosci 30:35–46

    Article  PubMed  Google Scholar 

  26. Hayashi T, Rumbaugh G, Huganir RL (2005) Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 47:709–723

    Article  CAS  PubMed  Google Scholar 

  27. Lin DT, Makino Y, Sharma K, Hayashi T, Neve R, Takamiya K, Huganir RL (2009) Regulation of AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat Neurosci 12:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Dolah DK, Mao LM, Shaffer C, Guo ML, Fibuch EE, Chu XP, Buch S, Wang JQ (2011) Reversible palmitoylation regulates surface stability of AMPA receptors in the nucleus accumbens in response to cocaine in vivo. Biol Psychiatr 69:1035–1042

    Article  Google Scholar 

  29. Luo Y, Wu PF, Zhou J, Xiao W, He JG, Guan XL, Zhang JT, Hu ZL, Wang F, Chen JG (2014) Aggravation of seizure-like events by hydrogen sulfide: involvement of multiple targets that control neuronal excitability. CNS Neurosci Ther 20:411–419

    Article  CAS  PubMed  Google Scholar 

  30. Lu HF, Wu PF, Yang YJ, Xiao W, Fan J, Liu J, Li YL, Luo Y, Hu ZL, Jin Y, Wang F, Chen JG (2014) Interactions between N-ethylmaleimide-sensitive factor and GluR2 in the nucleus accumbens contribute to the expression of locomotor sensitization to cocaine. J Neurosci 34:3493–3508

    Article  CAS  PubMed  Google Scholar 

  31. Luo Y, Zhou J, Li MX, Wu PF, Hu ZL, Ni L, Jin Y, Chen JG, Wang F (2015) Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell 14:170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drisdel RC, Alexander JK, Sayeed A, Green WN (2006) Assays of protein palmitoylation. Methods 40:127–134

    Article  CAS  PubMed  Google Scholar 

  33. Wan J, Roth AF, Bailey AO, Davis NG (2007) Palmitoylated proteins: purification and identification. Nat Protoc 2:1573–1584

    Article  CAS  PubMed  Google Scholar 

  34. Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117:109–128

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Van der Kloot W (1991) The regulation of quantal size. Prog Neurobiol 36:93–130

    Article  PubMed  Google Scholar 

  36. Jennings BC, Linder ME (2012) DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem 287:7236–7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naziroglu M, Senol N, Ghazizadeh V, Yuruker V (2014) Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol 34:895–903

    Article  CAS  PubMed  Google Scholar 

  38. Naziroglu M, Cig B, Ozgul C (2013) Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels. Neuroscience 242:151–160

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R (2012) Thiol-redox signaling, dopaminergic cell death, and Parkinson’s disease. Antioxid Redox Signal 17:1764–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu S, Fan Z, Xu W, Han Y, Zhang G, Liu W, Bai X, Wang X, Xin H, Li J, Wang H (2011) l-cysteine attenuates peroxynitrite-elicited cytotoxicity to spiral ganglion neurons: possible relation to hearing loss. Neurol Res 33:935–941

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    Article  CAS  PubMed  Google Scholar 

  42. Verkruyse LA, Hofmann SL (1996) Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271:15831–15836

    Article  CAS  PubMed  Google Scholar 

  43. Politis EG, Roth AF, Davis NG (2005) Transmembrane topology of the protein palmitoyl transferase Akr1. J Biol Chem 280:10156–10163

    Article  CAS  PubMed  Google Scholar 

  44. Fukata Y, Iwanaga T, Fukata M (2006) Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 40:177–182

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ (2010) Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem 285:38104–38114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Atluri VS, Kanthikeel SP, Reddy PV, Yndart A, Nair MP (2013) Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND). PloS One 8:e61399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Atluri VS, Pilakka-Kanthikeel S, Samikkannu T, Sagar V, Kurapati KR, Saxena SK, Yndart A, Raymond A, Ding H, Hernandez O, Nair MP (2014) Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder. Mol Brain 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  48. del Valle J, Bayod S, Camins A, Beas-Zarate C, Velazquez-Zamora DA, Gonzalez-Burgos I, Pallas M (2012) Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer’s disease. J Alzheimer’s dis 32:233–240

    Google Scholar 

  49. Auffret A, Gautheron V, Repici M, Kraftsik R, Mount HT, Mariani J, Rovira C (2009) Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer’s disease. J Neurosci 29:10144–10152

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi H, Yamazaki H, Hanamura K, Sekino Y, Shirao T (2009) Activity of the AMPA receptor regulates drebrin stabilization in dendritic spine morphogenesis. J Cell Sci 122:1211–1219

    Article  CAS  PubMed  Google Scholar 

  51. Hamad MI, Ma-Hogemeier ZL, Riedel C, Conrads C, Veitinger T, Habijan T, Schulz JN, Krause M, Wirth MJ, Hollmann M, Wahle P (2011) Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development 138:4301–4313

    Article  CAS  PubMed  Google Scholar 

  52. Hamad MI, Jack A, Klatt O, Lorkowski M, Strasdeit T, Kott S, Sager C, Hollmann M, Wahle P (2014) Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures. Development 141:1737–1748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (the 973 Program, No. 2013CB531303 to Dr. J. G. C.; No. 2014CB744601 to F. W.) and the National Natural Scientific Foundation of China (NSFC, No. 81302754 to P. F. W; No. 81222048 to F. W.). It was also supported by the International Science & Technology Cooperation Program of China (No. 2011DFA32670) and PCSIRT (No. IRT13016) to J. G. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhang, H., Wang, S. et al. Potentiation of Surface Stability of AMPA Receptors by Sulfhydryl Compounds: A Redox-Independent Effect by Disrupting Palmitoylation. Neurochem Res 41, 2890–2903 (2016). https://doi.org/10.1007/s11064-016-2006-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2006-x

Keywords

Navigation