Skip to main content
Log in

Uncoupling Protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1–13C)-Glucose

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mitochondrial aspartate/glutamate transporter Aralar/AGC1/Slc25a12 is critically involved in brain aspartate synthesis, and AGC1 deficiency results in a drastic fall of brain aspartate levels in humans and mice. It has recently been described that the uncoupling protein UCP2 transports four carbon metabolites including aspartate. Since UCP2 is expressed in several brain cell types and AGC1 is mainly neuronal, we set to test whether UCP2 could be a mitochondrial aspartate carrier in the brain glial compartment. The study of the cerebral metabolism of (1–13C)-glucose in vivo in wild type and UCP2-knockout mice showed no differences in C3 or C2 labeling of aspartate, suggesting that UCP2 does not function as a mitochondrial aspartate carrier in brain. However, surprisingly, a clear decrease (of about 30–35 %) in the fractional enrichment of glutamate, glutamine and GABA was observed in the brains of UCP2-KO mice which was not associated with differences in either glucose or lactate enrichments. The results suggest that the dilution in the labeling of glutamate and its downstream metabolites could originate from the uptake of an unlabeled substrate that could not leave the matrix via UCP2 becoming trapped in the matrix. Understanding the nature of the unlabeled substrate and its precursor(s) as alternative substrates to glucose is of interest in the context of neurological diseases associated with UCP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273(36):23327–23334

    Article  PubMed  Google Scholar 

  2. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and Aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. Embo J 20(18):5060–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramos M, Pardo B, Llorente-Folch I, Saheki T, Del Arco A, Satrustegui J (2011) Deficiency of the mitochondrial transporter of aspartate/glutamate Aralar/AGC1 causes hypomyelination and neuronal defects unrelated to myelin deficits in mouse brain. J Neurosci Res 89(12):2008–2017. doi:10.1002/jnr.22639

    Article  CAS  PubMed  Google Scholar 

  4. Pardo B, Rodrigues TB, Contreras L, Garzon M, Llorente-Folch I, Kobayashi K, Saheki T, Cerdan S, Satrustegui J (2011) Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J Cereb Blood Flow Metab 31(1):90–101. doi:10.1038/jcbfm.2010.146

    Article  CAS  PubMed  Google Scholar 

  5. Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87(1):29–67

    Article  CAS  PubMed  Google Scholar 

  6. Satrustegui J, Contreras L, Ramos M, Marmol P, Del Arco A, Saheki T, Pardo B (2007) Role of Aralar, the mitochondrial transporter of aspartate–glutamate, in brain N-acetylaspartate formation and Ca(2+) signaling in neuronal mitochondria. J Neurosci Res 85(15):3359–3366

    Article  CAS  PubMed  Google Scholar 

  7. Jalil MA, Begum L, Contreras L, Pardo B, Iijima M, Li MX, Ramos M, Marmol P, Horiuchi M, Shimotsu K, Nakagawa S, Okubo A, Sameshima M, Isashiki Y, Del Arco A, Kobayashi K, Satrustegui J, Saheki T (2005) Reduced N-acetylaspartate levels in mice lacking Aralar, a brain- and muscle-type mitochondrial aspartate–glutamate carrier. J Biol Chem 280(35):31333–31339

    Article  CAS  PubMed  Google Scholar 

  8. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13(3):981–989

    CAS  PubMed  Google Scholar 

  9. Wibom R, Lasorsa FM, Tohonen V, Barbaro M, Sterky FH, Kucinski T, Naess K, Jonsson M, Pierri CL, Palmieri F, Wedell A (2009) AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med 361(5):489–495. doi:10.1056/NEJMoa0900591

    Article  PubMed  Google Scholar 

  10. Ricquier D, Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345(Pt 2):161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111(3):960–965. doi:10.1073/pnas.1317400111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ledesma A, de Lacoba MG, Rial E (2002) The mitochondrial uncoupling proteins. Genome Biol 3(12):REVIEWS3015

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nature Rev Mol Cell Biol 6(3):248–261. doi:10.1038/nrm1572

    Article  CAS  Google Scholar 

  14. Nedergaard J, Cannon B (2003) The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol 88(1):65–84

    Article  CAS  PubMed  Google Scholar 

  15. Bouillaud F (2009) UCP2, not a physiologically relevant uncoupler but a glucose sparing switch impacting ROS production and glucose sensing. Biochim Biophys Acta 1787(5):377–383. doi:10.1016/j.bbabio.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  16. Richard D, Clavel S, Huang Q, Sanchis D, Ricquier D (2001) Uncoupling protein 2 in the brain: distribution and function. Biochemical Society transactions 29(Pt 6):812–817

    Article  CAS  PubMed  Google Scholar 

  17. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  PubMed  Google Scholar 

  18. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762. doi:10.1016/j.cell.2008.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G, Duncan JA 3rd, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MG, Barres BA (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53. doi:10.1016/j.neuron.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  20. Lu M, Zhao FF, Tang JJ, Su CJ, Fan Y, Ding JH, Bian JS, Hu G (2012) The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid Redox Signal 17(6):849–859. doi:10.1089/ars.2011.4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toda C, Kim JD, Impellizzeri D, Cuzzocrea S, Liu ZW, Diano S (2016) UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell 164(5):872–883. doi:10.1016/j.cell.2016.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105(6):745–755

    Article  CAS  PubMed  Google Scholar 

  23. Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2–13C2]acetate as detected by in vivo and in vitro 13 C NMR. J Biol Chem 265(22):12916–12926

    CAS  PubMed  Google Scholar 

  24. Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367

    Article  CAS  PubMed  Google Scholar 

  25. Shank RP, Leo GC, Zielke HR (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of d-[1-13C] glucose metabolism. J Neurochem 61(1):315–323

    Article  CAS  PubMed  Google Scholar 

  26. Contreras L, Urbieta A, Kobayashi K, Saheki T, Satrustegui J (2010) Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters. J Neurosci Res 88(5):1009–1016. doi:10.1002/jnr.22283

    Article  CAS  PubMed  Google Scholar 

  27. Du J, Rountree A, Cleghorn WM, Contreras L, Lindsay KJ, Sadilek M, Gu H, Djukovic D, Raftery D, Satrustegui J, Kanow M, Chan L, Tsang SH, Sweet IR, Hurley JB (2016) Phototransduction influences metabolic flux and nucleotide metabolism in mouse retina. J Biol Chem 291(9):4698–4710. doi:10.1074/jbc.M115.698985

    Article  CAS  PubMed  Google Scholar 

  28. Lindsay KJ, Du J, Sloat SR, Contreras L, Linton JD, Turner SJ, Sadilek M, Satrustegui J, Hurley JB (2014) Pyruvate kinase and aspartate–glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc Natl Acad Sci USA 111(43):15579–15584. doi:10.1073/pnas.1412441111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Contreras L (2015) Role of AGC1/Aralar in the metabolic synergies between neuron and glia. Neurochem Int. doi:10.1016/j.neuint.2015.04.001

    PubMed  Google Scholar 

  30. Pardo B, Contreras L, Satrustegui J (2013) De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate–glutamate carrier Aralar/AGC1. Front Endocrinol (Lausanne) 4:149. doi:10.3389/fendo.2013.00149

    Google Scholar 

  31. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation-where do all the carbons go? J Neurochem. doi:10.1111/jnc.12812

    Google Scholar 

  32. McKenna MC, Hopkins IB, Lindauer SL, Bamford P (2006) Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem Int 48(6–7):629–636. doi:10.1016/j.neuint.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  33. Karaca M, Frigerio F, Migrenne S, Martin-Levilain J, Skytt DM, Pajecka K, Martin-del-Rio R, Gruetter R, Tamarit-Rodriguez J, Waagepetersen HS, Magnan C, Maechler P (2015) GDH-dependent glutamate oxidation in the brain dictates peripheral energy substrate distribution. Cell Rep 13(2):365–375. doi:10.1016/j.celrep.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  34. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66(1):386–393

    Article  CAS  PubMed  Google Scholar 

  35. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26(4):435–439. doi:10.1038/82565

    Article  CAS  PubMed  Google Scholar 

  36. Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D, Cassard-Doulcier AM (2006) The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35(3–4):135–142. doi:10.1016/j.cyto.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  37. Carrion J, Abengozar MA, Fernandez-Reyes M, Sanchez-Martin C, Rial E, Dominguez-Bernal G, Gonzalez-Barroso MM (2013) UCP2 deficiency helps to restrict the pathogenesis of experimental cutaneous and visceral leishmaniosis in mice. PLoS Negl Trop Dis 7(2):e2077. doi:10.1371/journal.pntd.0002077

    Article  PubMed  PubMed Central  Google Scholar 

  38. Emre Y, Nubel T (2010) Uncoupling protein UCP2: when mitochondrial activity meets immunity. FEBS Lett 584(8):1437–1442. doi:10.1016/j.febslet.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez-Barroso MM, Giurgea I, Bouillaud F, Anedda A, Bellanne-Chantelot C, Hubert L, de Keyzer Y, de Lonlay P, Ricquier D (2008) Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PloS One 3(12):e3850. doi:10.1371/journal.pone.0003850

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dienel GA (2012) Fueling and imaging brain activation. ASN Neuro. doi:10.1042/AN20120021

    PubMed  PubMed Central  Google Scholar 

  41. Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V (2014) Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014:472459. doi:10.1155/2014/472459

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yasuno K, Ando S, Misumi S, Makino S, Kulski JK, Muratake T, Kaneko N, Amagane H, Someya T, Inoko H, Suga H, Kanemoto K, Tamiya G (2007) Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 144B(2):250–253. doi:10.1002/ajmg.b.30443

    Article  Google Scholar 

  43. Campbell DA, Sundaramurthy D, Gordon D, Markham AF, Pieri LF (1999) Association between a marker in the UCP-2/UCP-3 gene cluster and genetic susceptibility to anorexia nervosa. Mol Psychiatr 4(1):68–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Barbara Sesé, Isabel Manso and María José Guillén for excellent technical support. This work was supported by Grants S2010/BMD-2402 and SAF2014-56929R to JS, S2010/BMD-2349 and SAF2014-57739-R to SC, and S2010/BMD-2402 and CSD2007-00020 to ER; and an institutional grant from Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa. LC has been the recipient of a Junta de Ampliación de Estudios-Consejo Superior de Investigaciones Científicas and CIBERER postdoctoral contracts. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Cerdan or Jorgina Satrustegui.

Additional information

Especial Issue: Tribute to Mary C McKenna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, L., Rial, E., Cerdan, S. et al. Uncoupling Protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1–13C)-Glucose. Neurochem Res 42, 108–114 (2017). https://doi.org/10.1007/s11064-016-1999-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1999-5

Keywords

Navigation