Neurochemical Research

, Volume 41, Issue 10, pp 2619–2626 | Cite as

Experimental Evidence that 3-Methylglutaric Acid Disturbs Mitochondrial Function and Induced Oxidative Stress in Rat Brain Synaptosomes: New Converging Mechanisms

  • Ana Laura Colín-González
  • Ariana Lizbeth Paz-Loyola
  • María Eduarda de Lima
  • Sonia Galván-Arzate
  • Bianca Seminotti
  • César Augusto João Ribeiro
  • Guilhian Leipnitz
  • Diogo Onofre Souza
  • Moacir Wajner
  • Abel Santamaría
Original Paper

Abstract

3-Methylglutaric acid (3MGA) is an organic acid that accumulates in various organic acidemias whose patients present neurodegeneration events in children coursing with metabolic acidurias. Limited evidence describes the toxic mechanisms elicited by 3MGA in the brain. Herein, we explored the effects of 3MGA on different toxic endpoints in synaptosomal and mitochondrial-enriched fractions of adult rat brains to provide novel information on early mechanisms evoked by this metabolite. At 1 and 5 mM concentration, 3MGA increased lipid peroxidation, but decreased mitochondrial function only at 5 mM concentration. Despite less intense effects were obtained at 1 mM concentration, its co-administration with the kynurenine pathway (KP) metabolite and N-methyl-d-aspartate receptor (NMDAr) agonist, quinolinic acid (QUIN, 50 and 100 µM), produced toxic synergism on markers of oxidative stress and mitochondrial function. The toxicity of 3MGA per se (5 mM) was prevented by the cannabinoid receptor agonist WIN55,212-2 and the NMDAr antagonist kynurenic acid (KYNA), suggesting cannabinoid and glutamatergic components in the 3MGA pattern of toxicity. The synergic model (3MGA + QUIN) was also sensitive to KYNA and the antioxidant S-allylcysteine, but not to the nitric oxide synthase inhibitor l-nitroarginine methyl ester. These findings suggest various underlying mechanisms involved in the neurotoxicity of 3MGA that may possibly contribute to the neurodegeneration observed in acidemias.

Keywords

Organic acidurias Toxic organic acids Excitotoxicity Oxidative stress Mitochondrial dysfunction Cannabinoid system 3-Methylglutaric acid 

References

  1. 1.
    Wysocki SJ, Hähnel R (1986) 3-Hydroxy-3-methylglutaryl-coenzyme a lyase deficiency: a review. J Inherit Metab Dis 9:225–233CrossRefPubMedGoogle Scholar
  2. 2.
    Gibson KM, Breuer J, Nyhan WL (1988) 3-Hydroxy-3-methylglutarylcoenzyme a lyase deficiency: review of 18 reported patients. Eur J Pediatr 148:180–186CrossRefPubMedGoogle Scholar
  3. 3.
    Leipnitz G, Vargas CR, Wajner M (2015) Disturbance of redox homeostasis as a contributing underlying pathomechanism of brain and liver alterations in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 38:1021–1028CrossRefPubMedGoogle Scholar
  4. 4.
    Yylmaz Y, Ozdemir N, Ekinci G, Baykal T, Kocaman C (2006) Corticoespinal tract involvement in a patient with 3-HMG coenzyme a lyase deficiency. Pediatr Neurol 35:139–141CrossRefPubMedGoogle Scholar
  5. 5.
    Zaifeiriou DI, Vargiami E, Mayapetek E, Augoustidou-Savvopoulou P, Mitchell GA (2007) 3-Hydroxy-3-methylglutaryl coenzyme a lyase deficiency with reversible white matter changes after treatment. Pediatr Neurol 37:47–50CrossRefGoogle Scholar
  6. 6.
    Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260:153–159CrossRefPubMedGoogle Scholar
  7. 7.
    Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADH oxidase. J Clin Invest 117:910–918CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wortmann SB, Kluijtmans LA, Engelke UFH, Wevers RA, Morava E (2012) The 3-methylglutaconic acidurias: what’s new? J Inherit Metab Dis 35:13–22CrossRefPubMedGoogle Scholar
  9. 9.
    Wortmann SB, Kluijtmans LAJ, Sequeira S, Wevers RA, Morava E (2014) Leucine loading test is only discriminative for 3-methylglutaconic aciduria due to AUH defect. JIMD Rep 16:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wortmann SB, Duran M, Anikster Y, Barth PG, Sperl W, Zschocke J, Morava E, Wevers RA (2013) Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis 36:923–928CrossRefPubMedGoogle Scholar
  11. 11.
    Wortmann SB, Kremer BH, Graham A, Willemsen MA, Loupatty FJ, Hogg SL, Engelke UF, Kluijtmans LA, Wanders RJ, Illsinger S, Wilcken B, Cruysberg JR, Das AM, Morava E, Wevers RA (2010) 3-Methylglutaconic aciduria type I redefined: a syndrome with late-onset leukoencephalopathy. Neurology 75:1079–1083CrossRefPubMedGoogle Scholar
  12. 12.
    Ijlst L, Loupaty FJ, Ruiter JPN, Duran M, Lehnert W, Wanders RJA (2002) 3-Methylglutaconic aciduria type I is caused by mutations in AUH. Am J Hum Genet 71:1463–1466CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arn P, Funanage VL (2006) 3-methylglutaconic aciduria disorders: the clinical spectrum increases. J Pediatr Hematol Oncol 28:62–63CrossRefPubMedGoogle Scholar
  14. 14.
    Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41:852–859CrossRefPubMedGoogle Scholar
  15. 15.
    Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627CrossRefPubMedGoogle Scholar
  16. 16.
    Colín-González AL, Paz-Loyola AL, Serratos IN, Seminotti B, Ribeiro CAJ, Leipnitz G, Souza DO, Wajner M, Santamaría A (2015) Toxic synergism between quinolinic acid and organic acids accumulating in glutaric academia type I and in disorders of propionate metabolism in rat brain synaptosomes: relevance for metabolic acidemias. Neuroscience 308:64–74CrossRefPubMedGoogle Scholar
  17. 17.
    Colín-González AL, Paz-Loyola AL, Serratos IN, Seminotti B, Ribeiro CAJ, Leipnitz G, Souza DO, Wajner M, Santamaría A (2015) The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience 310:578–588CrossRefPubMedGoogle Scholar
  18. 18.
    Rangel-López E, Colín-González AL, Paz-Loyola AL, Pinzón E, Torres I, Serratos IN, Castellanos P, Wajner M, Souza DO, Santamaría A (2015) Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience 285:97–106CrossRefPubMedGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  20. 20.
    Ribeiro CAJ, Hickmann FH, Wajner M (2011) Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+,K+-ATPase activity probably through oxidative damage in brain cortex of young rats. Int J Dev Neurosci 29:1–7CrossRefPubMedGoogle Scholar
  21. 21.
    de Freitas RM (2010) Lipoic acid alters delta-aminolevulinic dehydratase, glutathione peroxidase and Na+,K+-ATPase activities and glutathione-reduced levels in rat hippocampus after pilocarpine-induced seizures. Cell Mol Neurobiol 30:381–387CrossRefPubMedGoogle Scholar
  22. 22.
    Santos IM, Tome Ada R, Feitosa CM, de Souza GF, Feng D, de Freitas RM, Jordan J (2010) Lipoic acid blocks seizures induced by pilocarpine via increases in delta-aminolevulinic dehydratase and Na+,K+-ATPase activity in rat brain. Pharmacol Biochem Behav 95:88–91CrossRefPubMedGoogle Scholar
  23. 23.
    Sauer SW, Okun JG, Fricker G, Mahringer A, Muller I, Crnic LR, Muhlhausen C, Hoffmann GF, Horster F, Goodman SI, Harding CO, Koeller DM, Kolker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood–brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97:899–910CrossRefPubMedGoogle Scholar
  24. 24.
    Stellmer F, Keyser B, Burckhardt BC, Koepsell H, Streichert T, Glatzel M, Jabs S, Thiem J, Herdering W, Koeller DM, Goodman SI, Lukacs Z, Ullrich K, Burckhardt G, Braulke T, Muhlhausen C (2007) 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J Mol Med 85:763–770CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ana Laura Colín-González
    • 1
  • Ariana Lizbeth Paz-Loyola
    • 1
  • María Eduarda de Lima
    • 2
  • Sonia Galván-Arzate
    • 3
  • Bianca Seminotti
    • 4
  • César Augusto João Ribeiro
    • 4
  • Guilhian Leipnitz
    • 4
  • Diogo Onofre Souza
    • 4
  • Moacir Wajner
    • 4
    • 5
  • Abel Santamaría
    • 1
  1. 1.Laboratorio de Aminoácidos ExcitadoresInstituto Nacional de Neurología y Neurocirugía, S.S.A.Mexico CityMexico
  2. 2.Universidade Federal do PampaUruguaianaBrazil
  3. 3.Departamento de NeuroquímicaInstituto Nacional de Neurología y Neurocirugía, S.S.A.Mexico CityMexico
  4. 4.Departamento de Bioquímica, Instituto de Ciências Básicas da SáudeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations