Skip to main content

Advertisement

Log in

Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin–eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Globus MY, Busto R, Martinez E et al (1991) Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem 57:470–478

    Article  CAS  PubMed  Google Scholar 

  2. Park JH, Park O, Cho JH et al (2014) Anti-inflammatory effect of tanshinone I in neuroprotection against cerebral ischemia–reperfusion injury in the gerbil hippocampus. Neurochem Res 39:1300–1312

    Article  CAS  PubMed  Google Scholar 

  3. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  CAS  PubMed  Google Scholar 

  4. Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol 62:209–218

    Article  CAS  PubMed  Google Scholar 

  5. Candelario-Jalil E, Alvarez D, Merino N et al (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  CAS  PubMed  Google Scholar 

  6. Chan PH (2004) Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res 29:1943–1949

    Article  CAS  PubMed  Google Scholar 

  7. Lee JC, Kim IH, Park JH et al (2015) Ischemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1. Free Radic Biol Med 79:78–90

    Article  CAS  PubMed  Google Scholar 

  8. Gilgun-Sherki Y, Rosenbaum Z, Melamed E et al (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  CAS  PubMed  Google Scholar 

  9. Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  CAS  PubMed  Google Scholar 

  10. Cuomo O, Rispoli V, Leo A et al (2013) The antiepileptic drug levetiracetam suppresses non-convulsive seizure activity and reduces ischemic brain damage in rats subjected to permanent middle cerebral artery occlusion. PLoS One 8:e80852

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee CH, Park JH, Yoo KY et al (2011) Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Exp Neurol 229:450–459

    Article  CAS  PubMed  Google Scholar 

  12. Nakata N, Kato H, Kogure K (1992) Protective effects of serotonin reuptake inhibitors, citalopram and clomipramine, against hippocampal CA1 neuronal damage following transient ischemia in the gerbil. Brain Res 590:48–52

    Article  CAS  PubMed  Google Scholar 

  13. Stohr T, Kupferberg HJ, Stables JP et al (2007) Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodent models for epilepsy. Epilepsy Res 74:147–154

    Article  PubMed  Google Scholar 

  14. Wasterlain CG, Stohr T, Matagne A (2011) The acute and chronic effects of the novel anticonvulsant lacosamide in an experimental model of status epilepticus. Epilepsy Res 94:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Errington AC, Stohr T, Heers C et al (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73:157–169

    Article  CAS  PubMed  Google Scholar 

  16. Beyreuther BK, Freitag J, Heers C et al (2007) Lacosamide: a review of preclinical properties. CNS Drug Rev 13:21–42

    Article  CAS  PubMed  Google Scholar 

  17. Bialer M, Johannessen SI, Kupferberg HJ et al (2007) Progress report on new antiepileptic drugs: a summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res 73:1–52

    Article  PubMed  Google Scholar 

  18. Cawello W, Boekens H, Bonn R (2012) Absorption, disposition, metabolic fate and elimination of the anti-epileptic drug lacosamide in humans: mass balance following intravenous and oral administration. Eur J Drug Metab Pharmacokinet 37:241–248

    Article  CAS  PubMed  Google Scholar 

  19. Hao JX, Stohr T, Selve N et al (2006) Lacosamide, a new anti-epileptic, alleviates neuropathic pain-like behaviors in rat models of spinal cord or trigeminal nerve injury. Eur J Pharmacol 553:135–140

    Article  CAS  PubMed  Google Scholar 

  20. Pitkanen A, Immonen R, Ndode-Ekane X et al (2014) Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res 108:653–665

    Article  CAS  PubMed  Google Scholar 

  21. Ahn JY, Yan BC, Park JH et al (2015) Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke. Exp Ther Med 10:2007–2014

    PubMed  PubMed Central  Google Scholar 

  22. Malek M, Duszczyk M, Zyszkowski M et al (2013) Hyperbaric oxygen and hyperbaric air treatment result in comparable neuronal death reduction and improved behavioral outcome after transient forebrain ischemia in the gerbil. Exp Brain Res 224:1–14

    Article  CAS  PubMed  Google Scholar 

  23. Yan BC, Park JH, Shin BN et al (2013) Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke. PLoS One 8:e74886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park JH, Cho JH, Kim IH et al (2015) Oenanthe Javanica extract protects against experimentally induced ischemic neuronal damage via its antioxidant effects. Chin Med J (Engl) 128:2932–2937

    Article  Google Scholar 

  25. Aerden LA, Kessels FA, Rutten BP et al (2004) Diazepam reduces brain lesion size in a photothrombotic model of focal ischemia in rats. Neurosci Lett 367:76–78

    Article  CAS  PubMed  Google Scholar 

  26. Suda S, Katsura K, Kanamaru T et al (2013) Valproic acid attenuates ischemia–reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. Eur J Pharmacol 707:26–31

    Article  CAS  PubMed  Google Scholar 

  27. Licko T, Seeger N, Zellinger C et al (2013) Lacosamide treatment following status epilepticus attenuates neuronal cell loss and alterations in hippocampal neurogenesis in a rat electrical status epilepticus model. Epilepsia 54:1176–1185

    Article  CAS  PubMed  Google Scholar 

  28. Stephen LJ, Brodie MJ (2011) Pharmacotherapy of epilepsy: newly approved and developmental agents. CNS Drugs 25:89–107

    Article  CAS  PubMed  Google Scholar 

  29. Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    Article  CAS  PubMed  Google Scholar 

  30. Fujimura M, Tominaga T, Chan PH (2005) Neuroprotective effect of an antioxidant in ischemic brain injury: involvement of neuronal apoptosis. Neurocrit Care 2:59–66

    Article  CAS  PubMed  Google Scholar 

  31. McCulloch J, Dewar D (2001) A radical approach to stroke therapy. Proc Natl Acad Sci USA 98:10989–10991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Zhang JJ, Mei YW et al (2011) Effects of immediate and delayed mild hypothermia on endogenous antioxidant enzymes and energy metabolites following global cerebral ischemia. Chin Med J (Engl) 124:2764–2766

    CAS  Google Scholar 

  33. Kim GW, Lewen A, Copin J et al (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood–brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 105:1007–1018

    Article  CAS  PubMed  Google Scholar 

  34. Chan PH, Kawase M, Murakami K et al (1998) Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18:8292–8299

    CAS  PubMed  Google Scholar 

  35. Qiao H, Dong L, Zhang X et al (2012) Protective effect of luteolin in experimental ischemic stroke: upregulated SOD1, CAT, Bcl-2 and claudin-5, down-regulated MDA and Bax expression. Neurochem Res 37:2014–2024

    Article  CAS  PubMed  Google Scholar 

  36. Park JH, Joo HS, Yoo KY et al (2011) Extract from Terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. Neurochem Res 36:2043–2050

    Article  CAS  PubMed  Google Scholar 

  37. Murakami K, Kondo T, Kawase M et al (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18:205–213

    CAS  PubMed  Google Scholar 

  38. Kim DW, Cho JH, Cho GS et al (2015) Hyperthermic preconditioning severely accelerates neuronal damage in the gerbil ischemic hippocampal dentate gyrus via decreasing SODs expressions. J Neurol Sci 358:266–275

    Article  CAS  PubMed  Google Scholar 

  39. Sharma SS, Gupta S (2007) Neuroprotective effect of MnTMPyP, a superoxide dismutase/catalase mimetic in global cerebral ischemia is mediated through reduction of oxidative stress and DNA fragmentation. Eur J Pharmacol 561:72–79

    Article  CAS  PubMed  Google Scholar 

  40. Crack PJ, Taylor JM, Flentjar NJ et al (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78:1389–1399

    Article  CAS  PubMed  Google Scholar 

  41. Crack PJ, Taylor JM, de Haan JB et al (2003) Glutathione peroxidase-1 contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic mouse in response to ischemia/reperfusion injury. J Cereb Blood Flow Metab 23:19–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee for his technical help in this study. This work was supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (NRF-2015M3A9B6066835), by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2014R1A2A2A01005307), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or Sung Koo Kim.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest. The procedures for animal handling and care adhered to guidelines that are in compliance with the current international laws and policies (Guide for the Care and Use of Laboratory Animals, The National Academies Press, 8th Ed., 2011), and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Kangwon National University. All of the experiments were conducted to minimize the number of animals used and the suffering caused by the procedures used in this study.

Additional information

Hyun Young Choi and Joon Ha Park have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H.Y., Park, J.H., Chen, B.H. et al. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia. Neurochem Res 41, 2380–2390 (2016). https://doi.org/10.1007/s11064-016-1951-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1951-8

Keywords

Navigation