Skip to main content

Advertisement

Log in

Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B (2006) Oxidative stress and neurodegeneration: Where are we now? J Neurochem 97:1634–1658. doi:10.1111/j.1471-4159.2006.03907.x

    Article  CAS  PubMed  Google Scholar 

  3. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169. doi:10.1172/JCI200317638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas B (2009) Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11:2077–2082. doi:10.1089/ars.2009.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta Mol Basis Dis 1772:494–502. doi:10.1016/j.bbadis.2006.10.014

    Article  CAS  Google Scholar 

  6. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184. doi:10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  Google Scholar 

  7. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203. doi:10.1016/j.foodchem.2005.07.042

    Article  CAS  Google Scholar 

  8. Bagdas D, Etoz BC, Gul Z et al (2014) Chlorogenic acid enhances abdominal skin flap survival based on epigastric artery in nondiabetic and diabetic rats. Ann Plast Surg. doi:10.1097/SAP.0000000000000313

    PubMed  Google Scholar 

  9. Bagdas D, Ozboluk HY, Cinkilic N, Gurun MS (2014) Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J Med Food 17:730–732. doi:10.1089/jmf.2013.2966

    Article  CAS  PubMed  Google Scholar 

  10. Bagdas D, Cam Etoz B, Inan Ozturkoglu S et al (2014) Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol Pharm Bull 37:361–370

    Article  CAS  PubMed  Google Scholar 

  11. Bagdas D, Etoz BC, Gul Z et al (2015) In vivo systemic chlorogenic acid therapy under diabetic conditions: wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol 81:54–61. doi:10.1016/j.fct.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Bagdas D, Gul NY, Topal A et al (2014) Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing. Naunyn Schmiedebergs Arch Pharmacol 387:1101–1116. doi:10.1007/s00210-014-1034-9

    Article  CAS  PubMed  Google Scholar 

  13. Kanno Y, Watanabe R, Zempo H et al (2013) Chlorogenic acid attenuates ventricular remodeling after myocardial infarction in mice. Int Heart J 54:176–180

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Shen D, Tang X et al (2014) Chlorogenic acid prevents isoproterenol-induced hypertrophy in neonatal rat myocytes. Toxicol Lett 226:257–263. doi:10.1016/j.toxlet.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  15. Rispail N, Morris PM, Webb KJ (2005) Phenolic compounds: extraction and analysis. In: Márquez AJ, Stougaard J, Udvardi MK, Parniske M, Spaink HP, Saalbach G, Webb KJ, Chiurazzi M, Márquez AJ (eds) Lotus japonicus handbook. Springer, Netherlands, pp 349–354

  16. Clifford MN (1999) Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J Sci Food Agric 79:362–372. doi:10.1002/(SICI)1097-0010(19990301)79:3<362:AID-JSFA256>3.0.CO;2-D

    Article  CAS  Google Scholar 

  17. Sharma P (2011) Cinnamic acid derivatives: a new chapter of various pharmacological activities. J Chem Pharm Res 3:403–423

    CAS  Google Scholar 

  18. Avanesyan AA, Pashkov AN, Simonyan NA et al (2009) Antiradical activity of cinnamic acid derivatives. Pharm Chem J 43:249–250. doi:10.1007/s11094-009-0285-0

    Article  CAS  Google Scholar 

  19. Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481. doi:10.1002/mnfr.200500010

    Article  CAS  PubMed  Google Scholar 

  20. Yu C, Geun Shin Y, Chow A et al (2002) Human, rat, and mouse metabolism of resveratrol. Pharm Res 19:1907–1914. doi:10.1023/A:1021414129280

    Article  CAS  PubMed  Google Scholar 

  21. Azuma K, Ippoushi K, Nakayama M et al (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 48:5496–5500. doi:10.1021/jf000483q

    Article  CAS  PubMed  Google Scholar 

  22. Gonthier M-P, Verny M-A, Besson C et al (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133:1853–1859

    CAS  PubMed  Google Scholar 

  23. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    Article  CAS  PubMed  Google Scholar 

  24. Wang S-H, Chen C-S, Huang S-H et al (2009) Hydrophilic ester-bearing chlorogenic acid binds to a novel domain to inhibit xanthine oxidase. Planta Med 75:1237–1240. doi:10.1055/s-0029-1185521

    Article  CAS  PubMed  Google Scholar 

  25. Gürsoy M, Büyükuysal RL (2008) Resveratrol protects rat striatal slices against anoxia-induced dopamine release. Neurochem Res 33:1838–1844. doi:10.1007/s11064-008-9645-5

    Article  PubMed  Google Scholar 

  26. Gürsoy M, Büyükuysal RL (2010) Mechanism of S100b release from rat cortical slices determined under basal and stimulated conditions. Neurochem Res 35:429–436. doi:10.1007/s11064-009-0075-9

    Article  PubMed  Google Scholar 

  27. Büyükuysal RL, Mete B (1999) Anoxia-induced dopamine release from rat striatal slices: involvement of reverse transport mechanism. J Neurochem 72:1507–1515

    Article  PubMed  Google Scholar 

  28. Preston E, Webster J (2000) Spectrophotometric measurement of experimental brain injury. J Neurosci Methods 94:187–192

    Article  CAS  PubMed  Google Scholar 

  29. Pilz J, Meineke I, Gleiter CH (2000) Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B Biomed Sci Appl 742:315–325

    Article  CAS  PubMed  Google Scholar 

  30. Demircan C, Gul Z, Buyukuysal RL (2014) High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione. Neurochem Res 39:1232–1244. doi:10.1007/s11064-014-1301-7

    Article  CAS  PubMed  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  32. Tallarida RJ, Murray RB (1987) Manual of pharmacologic calculations with computer programs, 2nd edn. Springer, New York

    Google Scholar 

  33. Feeney CJ, Frantseva MV, Carlen PL et al (2008) Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 1198:1–15. doi:10.1016/j.brainres.2007.12.049

    Article  CAS  PubMed  Google Scholar 

  34. Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5:19–33. doi:10.2174/157015907780077105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Simoni A, Yu LMY (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1:1439–1445. doi:10.1038/nprot.2006.228

    Article  PubMed  Google Scholar 

  36. Schurr A, Rigor BM (eds) (1990) Cerebral ischemia and resuscitation. CRC Press Phillis JW, Boca Raton

    Google Scholar 

  37. Lein PJ, Barnhart CD, Pessah IN (2011) Acute hippocampal slice preparation and hippocampal slice cultures. Methods Mol Biol 758:115–134. doi:10.1007/978-1-61779-170-3_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281–298

    Article  CAS  PubMed  Google Scholar 

  39. Clapp PA, Davies MJ, French MS, Gilbert BC (1994) The bactericidal action of peroxides; an E.P.R. spin-trapping study. Free Radic Res 21:147–167

    Article  CAS  PubMed  Google Scholar 

  40. Hyslop PA, Hinshaw DB, Scraufstatter IU et al (1995) Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radic Biol Med 19:31–37

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90:1193–1199. doi:10.1172/JCI115980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cohen G (1994) Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann N Y Acad Sci 738:8–14

    Article  CAS  PubMed  Google Scholar 

  43. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    CAS  PubMed  Google Scholar 

  44. Sokolova T, Gutterer JM, Hirrlinger J et al (2001) Catalase in astroglia-rich primary cultures from rat brain: immunocytochemical localization and inactivation during the disposal of hydrogen peroxide. Neurosci Lett 297:129–132

    Article  CAS  PubMed  Google Scholar 

  45. Avshalumov MV, Chen BT, Rice ME (2000) Mechanisms underlying H(2)O(2)-mediated inhibition of synaptic transmission in rat hippocampal slices. Brain Res 882:86–94

    Article  CAS  PubMed  Google Scholar 

  46. Pellmar TC, Neel KL, Lee KH (1989) Free radicals mediate peroxidative damage in guinea pig hippocampus in vitro. J Neurosci Res 24:437–444. doi:10.1002/jnr.490240314

    Article  CAS  PubMed  Google Scholar 

  47. Sah R, Schwartz-Bloom RD (1999) Optical imaging reveals elevated intracellular chloride in hippocampal pyramidal neurons after oxidative stress. J Neurosci 19:9209–9217

    CAS  PubMed  Google Scholar 

  48. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  49. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet (London, England) 344:721–724

    Article  CAS  Google Scholar 

  50. Cuvelier M-E, Richard H, Berset C (1992) Comparison of the antioxidative activity of some acid-phenols: strucgure-activity relationship. Biosci Biotechnol Biochem 56:324–325. doi:10.1271/bbb.56.324

    Article  CAS  Google Scholar 

  51. Chen JH, Ho C-T (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378. doi:10.1021/jf970055t

    Article  CAS  Google Scholar 

  52. Milić BL, Djilas SM, Čanadanović-Brunet JM (1998) Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem 61:443–447. doi:10.1016/S0308-8146(97)00126-X

    Article  Google Scholar 

  53. Medina I, Gallardo JM, Gonzalez MJ et al (2007) Effect of molecular structure of phenolic families as hydroxycinnamic acids and catechins on their antioxidant effectiveness in minced fish muscle. J Agric Food Chem 55:3889–3895. doi:10.1021/jf063498i

    Article  CAS  PubMed  Google Scholar 

  54. Marinova EM, Toneva A, Yanishlieva N (2009) Comparison of the antioxidative properties of caffeic and chlorogenic acids. Food Chem 114:1498–1502. doi:10.1016/j.foodchem.2008.11.045

    Article  CAS  Google Scholar 

  55. Cheng J-C, Dai F, Zhou B et al (2007) Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: mechanism and structure–activity relationship. Food Chem 104:132–139. doi:10.1016/j.foodchem.2006.11.012

    Article  CAS  Google Scholar 

  56. Chu Y-F, Brown PH, Lyle BJ et al (2009) Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 57:9801–9808. doi:10.1021/jf902095z

    Article  CAS  PubMed  Google Scholar 

  57. Quincozes-Santos A, Bobermin LD, Latini A et al (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8:e64372. doi:10.1371/journal.pone.0064372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sato Y, Itagaki S, Kurokawa T et al (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403:136–138. doi:10.1016/j.ijpharm.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  59. Kim J, Lee S, Shim J et al (2012) Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem Int 60:466–474. doi:10.1016/j.neuint.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  60. Oboh G, Agunloye OM, Akinyemi AJ et al (2012) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38:413–419. doi:10.1007/s11064-012-0935-6

    Article  PubMed  Google Scholar 

  61. Kwon S-H, Lee H-K, Kim J-A et al (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649:210–217. doi:10.1016/j.ejphar.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  62. Heitman E, Ingram DK (2014) Cognitive and neuroprotective effects of chlorogenic acid. Nutr Neurosci doi:10.1179/1476830514Y.0000000146

    PubMed  Google Scholar 

  63. Pero RW, Lund H, Leanderson T (2009) Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother Res 23:335–346. doi:10.1002/ptr.2628

    Article  CAS  PubMed  Google Scholar 

  64. Erdem MG, Cinkilic N, Vatan O et al (2012) Genotoxic and anti-genotoxic effects of vanillic acid against mitomycin C-induced genomic damage in human lymphocytes in vitro. Asian Pac J Cancer Prev 13:4993–4998

    Article  PubMed  Google Scholar 

  65. Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104

    Article  CAS  PubMed  Google Scholar 

  66. Pasciu V, Posadino AM, Cossu A et al (2010) Akt downregulation by flavin oxidase-induced ROS generation mediates dose-dependent endothelial cell damage elicited by natural antioxidants. Toxicol Sci 114:101–112. doi:10.1093/toxsci/kfp301

    Article  CAS  PubMed  Google Scholar 

  67. Carru C, Pasciu V, Sotgia S et al (2011) The oxidative state of LDL is the major determinant of anti/prooxidant effect of coffee on cu catalysed peroxidation. Open Biochem J 5:1–8. doi:10.2174/1874091X01105010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gadacha W, Ben-Attia M, Bonnefont-Rousselot D et al (2009) Resveratrol opposite effects on rat tissue lipoperoxidation: pro-oxidant during day-time and antioxidant at night. Redox Rep 14:154–158. doi:10.1179/135100009X466131

    Article  CAS  PubMed  Google Scholar 

  69. Kalinich JF, Ramakrishnan N, McClain DE (1997) The antioxidant Trolox enhances the oxidation of 2′,7′-dichlorofluorescin to 2′,7′-dichlorofluorescein. Free Radic Res 26:37–47

    Article  CAS  PubMed  Google Scholar 

  70. Kalyaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, Ischiropoulos H et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Uludag University Research Council for linguistic edition of the MS by American Journal Experts (AJE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Levent Buyukuysal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, Z., Demircan, C., Bagdas, D. et al. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol. Neurochem Res 41, 2075–2085 (2016). https://doi.org/10.1007/s11064-016-1919-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1919-8

Keywords

Navigation