Neurochemical Research

, Volume 42, Issue 1, pp 244–253 | Cite as

Quantification of Metabolic Rearrangements During Neural Stem Cells Differentiation into Astrocytes by Metabolic Flux Analysis

  • João V. Sá
  • Susanne Kleiderman
  • Catarina Brito
  • Ursula Sonnewald
  • Marcel Leist
  • Ana P. TeixeiraEmail author
  • Paula M. AlvesEmail author
Original Paper


Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.


Neural stem cells Astrocytic differentiation Metabolic flux analysis Carbon labelling cultures 



Support from iNOVA4Health - UID/Multi/04462/2013, a program funded by Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Educação e Ciência and co-funded by FEDER under the PT2020 Partnership Agreement, is acknowledged. This research has also received support from FCT through the project MITP-TB/ECE/0013/2013, from the German research foundation (RTG1331, KoRS-CB) and the German ministry for science (BMBF-DynaMeTox). JV Sá is a recipient of a Ph.D. fellowship from FCT (PD/BD/52474/2014). The expert technical assistance of Lars Evje with GC-MS is gratefully acknowledged. We are also thankful to Nuno Carinhas for his help on fluxome analysis.

Supplementary material

11064_2016_1907_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)


  1. 1.
    Ahn WS, Antoniewicz MR (2013) Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism. Metabolic Engineering 15:34–47CrossRefPubMedGoogle Scholar
  2. 2.
    Amaral AI, Teixeira AP, Håkonsen BI, Sonnewald U, Alves PM (2011) A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose. Frontiers in Neuroenergetics 3:1–5CrossRefGoogle Scholar
  3. 3.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metabolic Engineering 8(4):324–337CrossRefPubMedGoogle Scholar
  4. 4.
    Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry 98(3):641–653CrossRefPubMedGoogle Scholar
  5. 5.
    Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metabolism 14(6):724–738CrossRefPubMedGoogle Scholar
  6. 6.
    Bolanos JP, Peuchen S, Heales SJR, Land JM, Clark JB (1994) Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. Journal of Neurochemistry 63:910–916CrossRefPubMedGoogle Scholar
  7. 7.
    Brown AM (2004) Brain glycogen re-awakened. Journal of Neurochemistry 89(3):537–552CrossRefPubMedGoogle Scholar
  8. 8.
    Candelario KM, Shuttleworth CW, Cunningham LA (2013) Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1 alpha expression. Journal of Neurochemistry 125(3):420–429CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carinhas N, Bernal V, Monteiro F, Carrondo MJT, Oliveira R, Alves PM (2010) Improving baculovirus production at high cell density through manipulation of energy metabolism. Metabolic Engineering 12(1):39–52CrossRefPubMedGoogle Scholar
  10. 10.
    Carinhas N, Pais DAM, Koshkin A, Fernandes P, Coroadinha A, Carrondo MJT, Alves PM, Teixeira AP (2016) Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production. Scientific Reports 6:23529CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Crown SB, Antoniewicz MR (2013) Publishing (13)C metabolic flux analysis studies: A review and future perspectives. Metabolic Engineering 20:42–48CrossRefPubMedGoogle Scholar
  12. 12.
    Doetsch F, Caille I, Lim DA, Garcı JM, Alvarez-buylla A (1999) Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell 97:703–716CrossRefPubMedGoogle Scholar
  13. 13.
    Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Terzic CP, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism 14(2):264–271CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hofmann U, Maier K, Niebel A, Vacun G, Reuss M, Mauch K (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part I. Experimental observations. Biotechnology and Bioengineering 100(2):344–354CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson MA, Weick JP, Pearce RA, Zhang S-C (2007) Functional Neural Development from Human Embryonic Stem Cells: Accelerated Synaptic Activity Coculture. Journal of Neuroscience 27(12):3069–3077CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kleiderman SM, Sá JV, Teixeira AP, Brito C, Gutbier S, Evje LG, Hadera MG, Glaab E, Henry M, Sachinidis A, Alves PM, Sonnewald U, Leist M (2016) Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells. Glia 64(5):695–715CrossRefPubMedGoogle Scholar
  17. 17.
    Knobloch M, Braun SMG, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo MJ, Kovacs WJ, Karalay Ö, Suter U, Machado RAC, Roccio M, Lutolf MP, Semenkovich CF, Jessberger S (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493(7431):226–230CrossRefPubMedGoogle Scholar
  18. 18.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience 32:149–184CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McKenna M, Gruetter R, Sonnewald U, Waagepetersen H, Schousboe A (2012) Energy Metabolism of the Brain. In: Brady STS, Albers RW, Price DL (eds) Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology, 8th edn. Elsevier Academic Press, Oxford, UK, pp 200–299CrossRefGoogle Scholar
  20. 20.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384Google Scholar
  21. 21.
    Munger J, Bennett BD, Parikh A, Feng X, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26(10):1179–1186CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences 26(10):523–530CrossRefPubMedGoogle Scholar
  23. 23.
    Noh K, Wiechert W (2006) Experimental Design Principles for Isotopically Instationary C Labeling Experiments. Biotechnology and Bioengineering 94:234–251CrossRefPubMedGoogle Scholar
  24. 24.
    Palm T, Bolognin S, Meiser J, Nickels S, Träger C, Meilenbrock R-L, Brockhaus J, Schreitmüller M, Missler M, Schwamborn JC (2015) Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia. Scientific Reports 5:16321CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-Dependent Regulation of Energy Metabolism by Astrocytes: An Update. Glia 55:1251–1262CrossRefPubMedGoogle Scholar
  26. 26.
    Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America 91(22):10625–10629CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Phatnani H, Maniatis T (2015) Astrocytes in Neurodegenerative Disease. Cold Spring Harbor Perspectives in Biology 7(6):a020628CrossRefPubMedGoogle Scholar
  28. 28.
    Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission. Science 322:1551–1555CrossRefPubMedGoogle Scholar
  29. 29.
    Sá, J. V., Duarte, T. M., Carrondo, M. J. T., Alves, P. M., and Teixeira, A. P. (2015). Metabolic Flux Analysis: A Powerful Tool in Animal Cell Culture. In M. Al-Rubeai (Ed.), Animal Cell Culture (Vol. 521–539, p. 785). Springer International PublishingGoogle Scholar
  30. 30.
    Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Molecular Systems Biology. doi: 10.1038/msb4100109 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Seri B, Garcı JM, Mcewen BS, Alvarez-buylla A (2001) Astrocytes Give Rise to New Neurons in the Adult Mammalian Hippocampus. The Journal of Neuroscience 21(18):7153–7160PubMedGoogle Scholar
  32. 32.
    Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896CrossRefPubMedGoogle Scholar
  33. 33.
    Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. a. (2001). Control of synapse number by glia. Science (New York, N.Y.), 291, 657–661Google Scholar
  34. 34.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg Effect : Cell Proliferation. Science 324:1029–1034CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Walls, A. B., Bak, L. K., Sonnewald, U., Schousboe, A., and Waagepetersen, H. S. (2014). Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS). In HirrlingerJohannes & H. S. Waagepetersen (Eds.), Brain Energy Metabolism (pp. 73–105)Google Scholar
  36. 36.
    Westergaard, N., Banke, T. U. E., Wahl, P., Sonnewaldt, U., and Schousboe, A. (1995). Citrate modulates the regulation by Zn2 + of N-methyl-D-aspartate receptor-mediated channel current and neurotransmitter release, 92(April), 3367–3370Google Scholar
  37. 37.
    Westergaard N, Sonnewald U, Unsgård G, Peng L, Hertz L, Schousboe A (1994) Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures. Journal of Neurochemistry 62(5):1727–1733CrossRefPubMedGoogle Scholar
  38. 38.
    Wiechert W (2001) 13C metabolic flux analysis. Metabolic Engineering 3(3):195–206CrossRefPubMedGoogle Scholar
  39. 39.
    Yeo H, Lyssiotis CA, Zhang Y, Ying H, Asara JM, Cantley LC, Paik J-H (2013) FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. The EMBO Journal 32(19):2589–2602CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Young, J. D. (2014). INCA: A computational platform for isotopically nonstationary metabolic flux analysis. Bioinformatics (Oxford, England), 30, 11–13Google Scholar
  41. 41.
    Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnology and Bioengineering 99(3):686–699CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11(5):589–595CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zwingmann C, Leibfritz D (2003) Regulation of glial metabolism studied by 13C-NMR. NMR in Biomedicine 16(6–7):370–399CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • João V. Sá
    • 1
    • 2
  • Susanne Kleiderman
    • 3
  • Catarina Brito
    • 1
    • 2
  • Ursula Sonnewald
    • 4
    • 5
  • Marcel Leist
    • 3
  • Ana P. Teixeira
    • 1
    • 2
    Email author
  • Paula M. Alves
    • 1
    • 2
    Email author
  1. 1.IBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
  2. 2.Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
  3. 3.The Doerenkamp-Zbinden Chair of in-vitro Toxicology and Biomedicine/Alternatives to Animal Experimentation, University of KonstanzKonstanzGermany
  4. 4.Department of Neuroscience, Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.Department of Drug Design and Pharmacology Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations