Skip to main content

Advertisement

Log in

Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood–brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lavados PM, Hennis AJ, Fernandes JG, Medina MT, Legetic B, Hoppe A, Sacks C, Jadue L, Salinas R (2007) Stroke epidemiology, prevention, and management strategies at a regional level: Latin America and the Caribbean. Lancet Neurol 6:362–372

    Article  PubMed  Google Scholar 

  2. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76(6 Suppl):S85–S90

    Article  PubMed  Google Scholar 

  3. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tsai CF, Thomas B, Sudlow CL (2013) Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 81:264–272

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao YZ, Yao Z, D’Souza W, Zhu C, Chun H, Zhuoga C, Zhang Q, Hu X, Zhou D (2010) An epidemiological survey of stroke in Lhasa, Tibet, China. Stroke 41:2739–2743

    Article  PubMed  Google Scholar 

  6. Park JC, Young HS, Yu YB, Lee JH (1995) Isorhamnetin sulphate from the leaves and stems of Oenanthe javanica in Korea. Planta Med 61:377–378

    Article  CAS  PubMed  Google Scholar 

  7. Wiczkowski W, Skipor J, Misztal T, Szawara-Nowak D, Topolska J, Piskula MK (2015) Quercetin and isorhamnetin aglycones are the main metabolites of dietary quercetin in cerebrospinal fluid. Mol Nutr Food Res 59:1088–1094

    Article  CAS  PubMed  Google Scholar 

  8. Boesch-Saadatmandi C, Egert S, Schrader C, Coumoul X, Barouki R, Muller MJ, Wolffram S, Rimbach G (2010) Effect of quercetin on paraoxonase 1 activity—studies in cultured cells, mice and humans. J Physiol Pharmacol 61:99–105

    CAS  PubMed  Google Scholar 

  9. Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu Y, Cao L, Yang ZH, Sun XB (2012) Isorhamnetin inhibits H2O2-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 113:473–485

    Article  CAS  PubMed  Google Scholar 

  10. Zhang N, Pei F, Wei H, Zhang T, Yang C, Ma G, Yang C (2011) Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury. Exp Toxicol Pathol 63:33–38

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Chen Z, Yan M, He P, Chen Z, Dai H (2016) The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen glucose deprivation. J Neurochem 136:651–659

    Article  CAS  PubMed  Google Scholar 

  12. Jackman K, Kunz A, Iadecola C (2011) Modeling focal cerebral ischemia in vivo. Methods Mol Biol 793:195–209

    Article  CAS  PubMed  Google Scholar 

  13. Hochrainer K, Jackman K, Anrather J, Iadecola C (2012) Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion. Stroke 43:2229–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun J, Sun G, Meng X, Wang H, Luo Y, Qin M, Ma B, Wang M, Cai D, Guo P, Sun X (2013) Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS ONE 8:e64526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Hu X, Yang W, Gao Y, Chen J (2010) Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke 41:2341–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cetin F, Yazihan N, Dincer S, Akbulut G (2013) The effect of intracerebroventricular injection of beta amyloid peptide (1–42) on caspase-3 activity, lipid peroxidation, nitric oxide and NOS expression in young adult and aged rat brain. Turk Neurosurg 23:144–150

    PubMed  Google Scholar 

  17. Zeynalov E, Jones SM, Seo JW, Snell LD, Elliott JP (2015) Arginine-vasopressin receptor blocker conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice. PLoS ONE 10:e0136121

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A (2008) The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 36:2634–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weifeng Y, Li L, Yujie H, Weifeng L, Zhenhui G, Wenjie H (2016) Inhibition of acute lung injury by TNFR-Fc through regulation of an inflammation-oxidative stress pathway. PLoS ONE 11:e0151672

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu F, Feng JZ, Qiu YH, Yu FB, Zhang JZ, Zhou W, Yu F, Wang GK, An LN, Ni FH, Wu H, Zhao XX, Qin YW, Luo HD (2013) Activation of receptor for advanced glycation end products contributes to aortic remodeling and endothelial dysfunction in sinoaortic denervated rats. Atherosclerosis 229:287–294

    Article  CAS  PubMed  Google Scholar 

  21. Choi BM, Pae HO, Chung HT (2003) Nitric oxide priming protects nitric oxide-mediated apoptosis via heme-oxygenase-1 induction. Free Radic Biol Med 34:1136–1145

    Article  CAS  PubMed  Google Scholar 

  22. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  23. Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C (1990) Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 24:285–295

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Rosenberg GA (2011) Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42:3323–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nag S, Manias JL, Stewart DJ (2009) Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 118:197–217

    Article  PubMed  Google Scholar 

  26. Gerriets T, Walberer M, Ritschel N, Tschernatsch M, Mueller C, Bachmann G, Schoenburg M, Kaps M, Nedelmann M (2009) Edema formation in the hyperacute phase of ischemic stroke. Laboratory investigation. J Neurosurg 111:1036–1042

    Article  PubMed  Google Scholar 

  27. Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord: Drug Targets 12:698–714

    Article  CAS  Google Scholar 

  29. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    Article  CAS  PubMed  Google Scholar 

  31. Yang JH, Shin BY, Han JY, Kim MG, Wi JE, Kim YW, Cho IJ, Kim SC, Shin SM, Ki SH (2014) Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol Appl Pharmacol 274:293–301

    Article  CAS  PubMed  Google Scholar 

  32. Pérez-Asensio FJ, Hurtado O, Burguete MC, Moro MA, Salom JB, Lizasoain I, Torregrosa G, Leza JC, Alborch E, Castillo J, Knowles RG, Lorenzo P (2005) Inhibition of iNOS activity by 1400 W decreases glutamate release and ameliorates stroke outcome after experimental ischemia. Neurobiol Dis 18:375–384

    Article  PubMed  Google Scholar 

  33. Christopherson KS, Bredt DS (1997) Nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest 100:2424–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256

    Article  CAS  PubMed  Google Scholar 

  35. Simats A, García-Berrocoso T, Montaner J (2016) Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta 1862:411–424

    Article  CAS  PubMed  Google Scholar 

  36. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yenari MA, Kunis D, Sun GH, Onley D, Watson L, Turner S, Whitaker S, Steinberg GK (1998) Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp Neurol 153:223–233

    Article  CAS  PubMed  Google Scholar 

  38. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR (2015) Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 35:888–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ (2013) Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharm Sinica 34:39–48

    Article  CAS  Google Scholar 

  40. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–327

    Article  CAS  PubMed  Google Scholar 

  41. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi H, Xia P, Cui J, Talantova M, Bodhinathan K, Li W, Holland EA, Tong G, Piña-Crespo J, Zhang D, Nakanishi N, Larrick JW, McKercher SR, Nakamura T, Wang Y, Lipton SA (2015) Pharmacologically targeted NMDA receptor antagonism by nitromemantine for cerebrovascular disease. Sci Rep 5:14781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Jin-Jing Zhao and Jin-Qing Song have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JJ., Song, JQ., Pan, SY. et al. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice. Neurochem Res 41, 1939–1948 (2016). https://doi.org/10.1007/s11064-016-1904-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1904-2

Keywords

Navigation