Skip to main content

Advertisement

Log in

Blocking B7-1/CD28 Pathway Diminished Long-Range Brain Damage by Regulating the Immune and Inflammatory Responses in a Mouse Model of Intracerebral Hemorrhage

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acute brain injuries can activate bidirectional crosstalk between the injured brain and the immune system. The immune system, particularly T lymphocytes and cytokines, has been implicated in the progression of brain injury after intracerebral hemorrhage (ICH). Co-stimulatory molecules B7-1 (CD80)/B7-2 (CD86) binding cognate receptor provides a secondary signaling to T cell activation. The aim of our study was to explore the effects of anti-B7-1 antibody on the development and prognosis of cerebral hemorrhage and to investigate the possible underlying mechanism. Mice were inner canthus veniplex administered with anti-B7-1 antibody at 10 min and 24 h after ICH and sacrificed on the third day after ICH. Immune function was assessed via splenocyte proliferation assay and organism index, respectively. IFN-γ and IL-4 were detected by enzyme-linked immuno sorbent assay. The cerebral edema was evaluated via brain water content. The levels of autophagy and apoptosis related proteins were measured by western blotting analysis. In addition, functional outcome was studied with pole-climbing test and morris water maze. The mice were weighed on 0, 1, 3, 14 and 21 days after ICH. The treatment with anti-B7-1 antibody significantly lowered immune function, and reduced the latency of water maze on 18 and 20 days, the ratio of IFN-γ/IL-4 as well as body weight on day 3 after cerebral hemorrhage. Our study suggests that in the cerebral hemorrhage mice brain anti-B7-1 antibody may reduce long-range brain damage by reversing immune imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICH:

Intracerebral hemorrhage

ELISA:

Enzyme-linked immuno sorbent assay

BBB:

Blood–brain barrier

APC:

Antigen presenting cells

TCR:

T cell receptor

MHC:

Major histocompatibility complex

SI:

Spleen index

TI:

Thymus index

IFN-γ:

Interferon-γ

IL-4:

Interleukin-4

LC3:

Microtubule-associated protein-1A/1B light chain 3

CNS:

Central nervous system

References

  1. Dong XQ, Yu WH, Zhu Q et al (2015) Changes in plasma thrombospondin-1 concentrations following acute intracerebral hemorrhage. Clin Chim Acta 2015:09–013

    Google Scholar 

  2. Lu Q, Gao L, Huang L, Ruan L, Yang J, Huang W, Li Z, Zhang Y, Jin K, Zhuge Q (2014) Inhibition of mammalian target of rapamycin improves neurobehavioral deficit and modulates immune response after intracerebral hemorrhage in rat. J Neuroinflamm 11:11–44

    Article  CAS  Google Scholar 

  3. King MD, Whitaker-Lea WA, Campbell JM, Alleyne CH Jr, Dhandapani KM (2014) Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int J Cell Biol 2014:495817

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang T, Huang Y, Zhang M et al (2013) [Gly14]-Humanin offers neuroprotection through glycogen synthase kinase-3beta inhibition in a mouse model of intracerebral hemorrhage. Behav Brain Res 247:132–139

    Article  CAS  PubMed  Google Scholar 

  5. Naidech AM, Bernstein RA, Alberts MJ, Bleck TP (2010) Prior antiplatelet use does not affect hemorrhage growth or outcome after ICH 2. Neurology 74:526–527

    Article  PubMed  Google Scholar 

  6. Mayer SA, Davis S, Steiner T, Diringer MN, Broderick J (2007) Factor VIIa for ICH: behind the scenes of an academic-industry collaborative trial. Int J Stroke 2:164–168

    Article  PubMed  Google Scholar 

  7. Wartenberg KE, Mayer SA (2007) Reducing the risk of ICH enlargement. J Neurol Sci 261:99–107

    Article  CAS  PubMed  Google Scholar 

  8. Min H, Hong J, Cho IH et al (2015) TLR2-induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models. Mol Brain 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373:1632–1644

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  11. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298

    Article  PubMed  Google Scholar 

  12. Power C, Henry S, Del Bigio MR et al (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742

    Article  CAS  PubMed  Google Scholar 

  13. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Tsirka SE (2005) Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care 3:77–85

    Article  CAS  PubMed  Google Scholar 

  15. Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wasserman JK, Zhu X, Schlichter LC (2007) Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res 1180:140–154

    Article  CAS  PubMed  Google Scholar 

  17. Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Wang M, Li H et al (2015) Upregulation of miR-497 induces hepatic insulin resistance in E3 rats with HFD-MetS by targeting insulin receptor. Mol Cell Endocrinol 416:57–69

    Article  CAS  PubMed  Google Scholar 

  19. Greaves P, Gribben JG (2013) The role of B7 family molecules in hematologic malignancy. Blood 121:734–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tuosto L, Capuano C, Muscolini M, Santoni A, Galandrini R (2015) The multifaceted role of PIP2 in leukocyte biology. CMLS 72:4461–4474

    Article  CAS  PubMed  Google Scholar 

  21. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo CL, Li BX, Li QQ et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  CAS  PubMed  Google Scholar 

  23. Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344:1450–1460

    Article  CAS  PubMed  Google Scholar 

  25. Hvilsted Nielsen H, Toft-Hansen H, Lambertsen KL, Owens T, Finsen B (2011) Stimulation of adult oligodendrogenesis by myelin-specific T cells. Am J Pathol 179:2028–2041

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palumbo ML, Trinchero MF, Zorrilla-Zubilete MA, Schinder AF, Genaro AM (2012) Glatiramer acetate reverts stress-induced alterations on adult neurogenesis and behavior. Involvement of Th1/Th2 balance. Brain Behav Immun 26:429–438

    Article  CAS  PubMed  Google Scholar 

  27. Xia Y, Qi F, Zou J, Yao Z (2014) Influenza A(H1N1) vaccination during early pregnancy transiently promotes hippocampal neurogenesis and working memory. Involvement of Th1/Th2 balance. Brain Res 1592:34–43

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44

    Article  CAS  PubMed  Google Scholar 

  29. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang J, Dore S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    Article  CAS  PubMed  Google Scholar 

  31. Matsushita K, Meng W, Wang X et al (2000) Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab 20:396–404

    Article  CAS  PubMed  Google Scholar 

  32. Chang P, Dong W, Zhang M et al (2014) Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci 52:242–249

    Article  CAS  PubMed  Google Scholar 

  33. Turrin NP, Plata-Salaman CR (2000) Cytokine–cytokine interactions and the brain. Brain Res Bull 51:3–9

    Article  CAS  PubMed  Google Scholar 

  34. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34

    Article  CAS  PubMed  Google Scholar 

  35. Pralong FP, Gaillard RC (2001) Neuroendocrine effects of leptin. Pituitary 4:25–32

    Article  CAS  PubMed  Google Scholar 

  36. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S (2011) Retro-orbital injections in mice. Lab Anim 40:155–160

    Article  Google Scholar 

  37. Ji W, Chen X, Zhengrong C, Yumin H, Huang L, Qiu Y (2008) Therapeutic effects of anti-B7-1 antibody in an ovalbumin-induced mouse asthma model. Int Immunopharmacol 8:1190–1195

    Article  CAS  PubMed  Google Scholar 

  38. Huang L, Kong Y, Wang J, Sun J, Shi Q, Qiu YH (2015) Reducing progression of experimental lupus nephritis via inhibition of the B7/CD28 signaling pathway. Mol Med Rep 12:4187–4195

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramiro-Puig E, Perez-Cano FJ, Ramirez-Santana C et al (2007) Spleen lymphocyte function modulated by a cocoa-enriched diet. Clin Exp Immunol 149:535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao Z, Zhang Z, Huang Z et al (2014) Antitumor and immunomodulatory effects of low-dose 5-FU on hepatoma 22 tumor-bearing mice. Oncol Lett 7:1260–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong T, Wang CF, Yuan JR et al (2015) Inhibition of tumor growth and immunomodulatory effects of flavonoids and scutebarbatines of Scutellaria barbata D. Don in Lewis-Bearing C57BL/6 mice. eCAM 2015:630760

    PubMed  PubMed Central  Google Scholar 

  42. Manaenko A, Fathali N, Khatibi NH et al (2011) Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int 58:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Yuhua Qiu and her team for their helpful providing the anti-B7-1 antibody which comes from Department of Immunology in Soochow University. This work was supported by the National Natural Science Foundation of China (Nos. 81530062, 81271379, 81301039, 81373251 and 81400999), National High Technology Research and Development Program of China (863 Program, No. 2015AA020503), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyang Tao.

Additional information

Lu Ma and Xi Shen have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Shen, X., Gao, Y. et al. Blocking B7-1/CD28 Pathway Diminished Long-Range Brain Damage by Regulating the Immune and Inflammatory Responses in a Mouse Model of Intracerebral Hemorrhage. Neurochem Res 41, 1673–1683 (2016). https://doi.org/10.1007/s11064-016-1883-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1883-3

Keywords

Navigation