Skip to main content

Advertisement

Log in

Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stromal cell-derived factor 1 (SDF-1)/chemokine CXC motif ligand 12 (CXCL12), a chemokine that is upregulated in dorsal root ganglion (DRG) during chronic pain models, has recently been found to play a central role in pain hypersensitivity. The purpose of present study is to investigate the functional impact of SDF-1 and its receptor, chemokine CXC motif receptor 4 (CXCR4), on two TTXR sodium channels in rat DRG using electrophysiological techniques. Preincubation with SDF-1 caused a concentration-dependent increase of Nav1.8 and Nav1.9 currents amplitudes in acutely isolated small diameter DRG neurons in short-term culture. As to Nav1.9, changes in current density and kinetic properties of Nav1.9 current evoked by SDF-1(50 ng/ml) was eliminated by CXCR4 antagonist AMD3100 and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The increase in Nav1.9 current was also blocked by pertussis toxin (PTX) but not cholera toxin (CTX), showing involvement of Gi/o but not Gs subunits. As to Nav1.8, inhibitors (AMD3100, PTX, CTX, LY294002) used in present study didn’t inhibit the increased amplitude of Nav1.8 current and shifted activation curve of Nav1.8 in a hyperpolarizing direction in the presence of SDF-1 (50 ng/ml). In conclusion, our data demonstrated that SDF-1 may excite primary nociceptive sensory neurons by acting on the biophysical properties of Nav1.8 and Nav1.9 currents but via different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA (2009) Chemokines and pain mechanisms. Brain Res Rev 60(1):125–134. doi:10.1016/j.brainresrev.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  2. Miller RJ, Jung H, Bhangoo SK, White FA (2009) Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 194:417–449. doi:10.1007/978-3-540-79090-7_12

    Article  CAS  Google Scholar 

  3. Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126(1):56–68. doi:10.1016/j.pharmthera.2010.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16(11):1267–1276. doi:10.1038/nm.2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bajetto A, Bonavia R, Barbero S, Piccioli P, Costa A, Florio T, Schettini G (1999) Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73(6):2348–2357

    Article  CAS  PubMed  Google Scholar 

  6. Rostasy K, Egles C, Chauhan A, Kneissl M, Bahrani P, Yiannoutsos C, Hunter DD, Nath A, Hedreen JC, Navia BA (2003) SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J Neuropathol Exp Neurol 62(6):617–626

    Article  CAS  PubMed  Google Scholar 

  7. Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq M (2001) Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 13(5):845–856

    Article  CAS  PubMed  Google Scholar 

  8. Bhangoo SK, Ripsch MS, Buchanan DJ, Miller RJ, White FA (2009) Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol Pain 5:48. doi:10.1186/1744-8069-5-48

    Article  PubMed  PubMed Central  Google Scholar 

  9. White F, Wilson N (2010) Opiate-induced hypernociception and chemokine receptors. Neuropharmacology 58(1):35–37. doi:10.1016/j.neuropharm.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  10. Bhangoo SK, Ren D, Miller RJ, Chan DM, Ripsch MS, Weiss C, McGinnis C, White FA (2007) CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav Immun 21(5):581–591. doi:10.1016/j.bbi.2006.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson NM, Jung H, Ripsch MS, Miller RJ, White FA (2011) CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun 25(3):565–573. doi:10.1016/j.bbi.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  12. Bhangoo S, Ren D, Miller RJ, Henry KJ, Lineswala J, Hamdouchi C, Li B, Monahan PE, Chan DM, Ripsch MS, White FA (2007) Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors. Mol Pain 3:38. doi:10.1186/1744-8069-3-38

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen W, Hu XM, Liu YN, Han Y, Chen LP, Wang CC, Song C (2014) CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J Neuroinflamm 11:75. doi:10.1186/1742-2094-11-75

    Article  Google Scholar 

  14. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19(24):Rc43

    CAS  PubMed  Google Scholar 

  15. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2(6):541–548. doi:10.1038/9195

    Article  CAS  PubMed  Google Scholar 

  16. Rush AM, Cummins TR, Waxman SG (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 579(Pt 1):1–14. doi:10.1113/jphysiol.2006.121483

    Article  CAS  PubMed  Google Scholar 

  17. Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22(23):10277–10290

    CAS  PubMed  Google Scholar 

  18. Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86(2):629–640

    CAS  PubMed  Google Scholar 

  19. Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86(3):1351–1364

    CAS  PubMed  Google Scholar 

  20. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science (New York, NY) 296(5573):1636–1639. doi:10.1126/science.1071550

    Article  CAS  Google Scholar 

  21. Belkouch M, Dansereau MA, Reaux-Le Goazigo A, Van Steenwinckel J, Beaudet N, Chraibi A, Melik-Parsadaniantz S, Sarret P (2011) The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a Gbetagamma-dependent mechanism. J Neurosci 31(50):18381–18390. doi:10.1523/jneurosci.3386-11.2011

    Article  CAS  PubMed  Google Scholar 

  22. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548(Pt 2):373–382. doi:10.1113/jphysiol.2003.039131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim DS, Kim YS, Bae WJ, Lee HJ, Chang SW, Kim WS, Kim EC (2014) The role of SDF-1 and CXCR4 on odontoblastic differentiation in human dental pulp cells. Int Endod J 47(6):534–541. doi:10.1111/iej.12182

    Article  CAS  PubMed  Google Scholar 

  24. Chen G, Chen SM, Wang X, Ding XF, Ding J, Meng LH (2012) Inhibition of chemokine (CXC motif) ligand 12/chemokine (CXC motif) receptor 4 axis (CXCL12/CXCR4)-mediated cell migration by targeting mammalian target of rapamycin (mTOR) pathway in human gastric carcinoma cells. J Biol Chem 287(15):12132–12141. doi:10.1074/jbc.M111.302299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang Z, Zhou W, Guan S, Wang J, Liang Y (2013) Contribution of SDF-1alpha/CXCR4 signaling to brain development and glioma progression. Neuro-Signals 21(3–4):240–258. doi:10.1159/000339091

    Article  CAS  PubMed  Google Scholar 

  26. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599. doi:10.1038/31269

    Article  CAS  PubMed  Google Scholar 

  27. McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213(2):442–456. doi:10.1006/dbio.1999.9405

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Zhang L, Kombian SB (2004) Dopamine-induced synaptic depression in the parabrachial nucleus is independent of CTX- and PTX-sensitive G-proteins, PKA and PLC signalling pathways. Brain Res 995(2):236–246

    Article  CAS  PubMed  Google Scholar 

  29. Tyrrell L, Renganathan M, Dib-Hajj SD, Waxman SG (2001) Glycosylation alters steady-state inactivation of sodium channel Nav1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. J Neurosci 21(24):9629–9637

    CAS  PubMed  Google Scholar 

  30. Sleeper AA, Cummins TR, Dib-Hajj SD, Hormuzdiar W, Tyrrell L, Waxman SG, Black JA (2000) Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J Neurosci 20(19):7279–7289

    CAS  PubMed  Google Scholar 

  31. Qiu F, Jiang Y, Zhang H, Liu Y, Mi W (2012) Increased expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 within dorsal root ganglia in a rat model of bone cancer pain. Neurosci Lett 512(2):61–66. doi:10.1016/j.neulet.2012.01.069

    Article  CAS  PubMed  Google Scholar 

  32. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269(7):5241–5248

    CAS  PubMed  Google Scholar 

  33. Rush AM, Waxman SG (2004) PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 2:264–271. doi:10.1016/j.brainres.2004.07.042

    Article  Google Scholar 

  34. Choi JI, Svensson CI, Koehrn FJ, Bhuskute A, Sorkin LS (2010) Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain 149(2):243–253. doi:10.1016/j.pain.2010.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. White FA, Wilson NM (2008) Chemokines as pain mediators and modulators. Curr Opin Anaesthesiol 21(5):580–585. doi:10.1097/ACO.0b013e32830eb69d

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dubovy P, Klusakova I, Svizenska I, Brazda V (2010) Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem Cell Biol 133(3):323–337. doi:10.1007/s00418-010-0675-0

    Article  CAS  PubMed  Google Scholar 

  37. Reaux-Le Goazigo A, Rivat C, Kitabgi P, Pohl M, Melik Parsadaniantz S (2012) Cellular and subcellular localization of CXCL12 and CXCR4 in rat nociceptive structures: physiological relevance. Eur J Neurosci 36(5):2619–2631. doi:10.1111/j.1460-9568.2012.08179.x

    Article  PubMed  Google Scholar 

  38. Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE, Forrest MJ (2003) Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci USA 100(13):7947–7952. doi:10.1073/pnas.1331358100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanaka T, Minami M, Nakagawa T, Satoh M (2004) Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci Res 48(4):463–469. doi:10.1016/j.neures.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  40. White FA, Sun J, Waters SM, Ma C, Ren D, Ripsch M, Steflik J, Cortright DN, Lamotte RH, Miller RJ (2005) Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci USA 102(39):14092–14097. doi:10.1073/pnas.0503496102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartmann TN, Grabovsky V, Pasvolsky R, Shulman Z, Buss EC, Spiegel A, Nagler A, Lapidot T, Thelen M, Alon R (2008) A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol 84(4):1130–1140. doi:10.1189/jlb.0208088

    Article  CAS  PubMed  Google Scholar 

  42. Thelen M, Thelen S (2008) CXCR7, CXCR4 and CXCL12: an eccentric trio? J Neuroimmunol 198(1–2):9–13. doi:10.1016/j.jneuroim.2008.04.020

    Article  CAS  PubMed  Google Scholar 

  43. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21(14):5027–5035

    CAS  PubMed  Google Scholar 

  44. Sun JH, Yang B, Donnelly DF, Ma C, LaMotte RH (2006) MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J Neurophysiol 96(5):2189–2199. doi:10.1152/jn.00222.2006

    Article  CAS  PubMed  Google Scholar 

  45. Priest BT (2009) Future potential and status of selective sodium channel blockers for the treatment of pain. Curr Opin Drug Discov Dev 12(5):682–692

    CAS  Google Scholar 

  46. Lampert A, O’Reilly AO, Reeh P, Leffler A (2010) Sodium channelopathies and pain. Pflugers Arch 460(2):249–263. doi:10.1007/s00424-009-0779-3

    Article  CAS  PubMed  Google Scholar 

  47. Zhuang ZY, Xu H, Clapham DE, Ji RR (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 24(38):8300–8309. doi:10.1523/jneurosci.2893-04.2004

    Article  CAS  PubMed  Google Scholar 

  48. Bonnington JK, McNaughton PA (2003) Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol 551(Pt 2):433–446. doi:10.1113/jphysiol.2003.039990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kao DJ, Li AH, Chen JC, Luo RS, Chen YL, Lu JC, Wang HL (2012) CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons. J Neuroinflamm 9:189. doi:10.1186/1742-2094-9-189

    Article  CAS  Google Scholar 

  50. Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J (2011) Spatiotemporal CCR1, CCL3(MIP-1alpha), CXCR4, CXCL12(SDF-1alpha) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine 14(5):583–597. doi:10.3171/2010.12.spine10480

    Article  PubMed  Google Scholar 

  51. Luo Y, Lathia J, Mughal M, Mattson MP (2008) SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. J Biol Chem 283(36):24789–24800. doi:10.1074/jbc.M800649200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rivat C, Sebaihi S, Van Steenwinckel J, Fouquet S, Kitabgi P, Pohl M, Melik Parsadaniantz S, Reaux-Le Goazigo A (2014) Src family kinases involved in CXCL12-induced loss of acute morphine analgesia. Brain Behav Immun 38:38–52. doi:10.1016/j.bbi.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  53. Murphy PM (1996) Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev 7(1):47–64

    Article  CAS  PubMed  Google Scholar 

  54. Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P (2008) Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J Gen Physiol 131(3):211–225. doi:10.1085/jgp.200709935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ostman JA, Nassar MA, Wood JN, Baker MD (2008) GTP up-regulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9. J Physiol 586(4):1077–1087. doi:10.1113/jphysiol.2007.147942

    Article  CAS  PubMed  Google Scholar 

  56. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98(2):185–200

    Article  CAS  PubMed  Google Scholar 

  57. Kelly A, Lynch MA (2000) Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology 39(4):643–651

    Article  CAS  PubMed  Google Scholar 

  58. Lin CH, Yeh SH, Lin CH, Lu KT, Leu TH, Chang WC, Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31(5):841–851

    Article  CAS  PubMed  Google Scholar 

  59. Sanna PP, Cammalleri M, Berton F, Simpson C, Lutjens R, Bloom FE, Francesconi W (2002) Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 22(9):3359–3365

    CAS  PubMed  Google Scholar 

  60. Tan M, Groszer M, Tan AM, Pandya A, Liu X, Xie CW (2003) Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 23(32):10292–10301

    CAS  PubMed  Google Scholar 

  61. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92(5):949–966. doi:10.1002/jcb.20094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the National Natural Science Foundation (Grant 30901398). The authors thank Yue-Juan Li and Fang Li for all the helpful suggestions during the revision of original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hong Liu or Wei-Dong Mi.

Ethics declarations

Conflict of interest

We don’t have any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, F., Li, Y., Fu, Q. et al. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms. Neurochem Res 41, 1587–1603 (2016). https://doi.org/10.1007/s11064-016-1873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1873-5

Keywords

Navigation