Skip to main content
Log in

Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Reelin is an extracellular matrix glycoprotein involved in the modulation of synaptic plasticity and essential for the proper radial migration of cortical neurons during development and for the integration and positioning of dentate granular cell progenitors; its expression is down-regulated as brain maturation is completed. Trimethyltin (TMT) is a potent neurotoxicant which causes selective neuronal death mainly localised in the CA1-CA3/hilus hippocampal regions. In the present study we analysed the expression of reelin and the modulation of endogenous neurogenesis in the postnatal rat hippocampus during TMT-induced neurodegeneration (TMT 6 mg/kg). Our results show that TMT administration induces changes in the physiological postnatal decrease of reelin expression in the hippocampus of developing rats. In particular, quantitative analysis of reelin-positive cells evidenced, in TMT-treated animals, a persistent reelin expression in the stratum lacunosum moleculare of Cornu Ammonis and in the molecular layer of Dentate Gyrus. In addition, a significant decrease in the number of bromodeoxyuridine (BrdU)-labeled newly-generated cells was also detectable in the subgranular zone of P21 TMT-treated rats compared with P21 control animals; no differences between P28 TMT-treated rats and age-matched control group were observed. In addition the neuronal commitment of BrdU-positive cells appeared reduced in P21 TMT-treated rats compared with P28 TMT-treated animals. Thus TMT treatment, administrated during development, induces an early reduction of endogenous neurogenesis and influences the hippocampal pattern of reelin expression in a temporally and regionally specific manner, altering the physiological decrease of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Frotscher M (2010) Role for reelin in stabilizing cortical architecture. Trends Neurosci 33:407–414

    Article  CAS  PubMed  Google Scholar 

  2. Del Rio JA, Heimrich B, Borrell V, Förster E, Drakew A, Alcántara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E (1997) A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70–74

    Article  PubMed  Google Scholar 

  3. Frotscher M (1997) Dual role of Cajal-Retzius cells and reelin in cortical development. Cell Tissue Res 290:315–322

    Article  CAS  PubMed  Google Scholar 

  4. Borrell V, Del Río JA, Alcántara S, Derer M, Martínez A, D’Arcangelo G, Nakajima K, Mikoshib K, Derer P, Curran T, Soriano E (1999) Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J Neurosci 19:1345–1358

    CAS  PubMed  Google Scholar 

  5. Borrell V, Pujadas L, Simó S, Durà D, Solé M, Cooper JA, Del Río JA, Soriano E (2007) Reelin and mDab1 regulate the development of hippocampal connections. Mol Cell Neurosci 36:158–173

    Article  CAS  PubMed  Google Scholar 

  6. Drakev A, Frotscher M, Deller T, Ogawa M, Heinrich B (1998) Developmental distribution of a reeler gene-related antigen in the rat hippocampal formation visulized by CR-50 immunocytochemistry. Neuroscience 82:1079–1086

    Article  Google Scholar 

  7. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 95:3221–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Supèr H, Martínez A, Del Río JA, Soriano E (1998) Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J Neurosci 18:4616–4626

    PubMed  Google Scholar 

  9. Alcántara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18:7779–7799

    PubMed  Google Scholar 

  10. Knuesel I (2010) Reelin-mediated signaling in neuropsychiatric and neurodegenerative diseases. Prog Neurobiol 91:257–274

    Article  CAS  PubMed  Google Scholar 

  11. Pujadas L, Gruart A, Bosch C, Delgado L, Teixeira CM, Rossi D, de Lecea L, Martínez A, Delgado-García JM, Soriano E (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30:4636–4649

    Article  CAS  PubMed  Google Scholar 

  12. Fatemi SH, Earle JA, McMenomy T (2000) Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5:654–663

    Article  CAS  PubMed  Google Scholar 

  13. Fatemi SH, Kroll JL, Stary JM (2001) Alterated levels of reelin and its isoforms in schizophrenia and mood disorders. NeuroRep 12:3209–3215

    Article  CAS  Google Scholar 

  14. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802

    CAS  PubMed  Google Scholar 

  15. Haas CA, Frotscher M (2010) Reelin deficiency causes granule cell dispersion in epilepsy. Exp Brain Res 200:141–149

    Article  PubMed  Google Scholar 

  16. Lakatosova S, Ostatnikova D (2012) Reelin and its complex involvement in brain development and function. Int J Biochem Cell Biol 44:1501–1504

    Article  CAS  PubMed  Google Scholar 

  17. Frotscher M, Haas CA, Förster E (2003) Reelin controls granule cell migration in the dentate gyrus by acting on the radial scaffold. Cereb Cortex 13:634–640

    Article  PubMed  Google Scholar 

  18. Won SJ, Kim SH, Xie L, Wang Y, Mao XO, Jin K, Greenberg DA (2006) Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198:250–259

    Article  CAS  PubMed  Google Scholar 

  19. Gong C, Wang TW, Huang HS, Parent JM (2007) Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurosci 27:1803–1811

    Article  CAS  PubMed  Google Scholar 

  20. Massalini S, Pellegatta S, Pisati F, Finocchiaro G, Farace MG, Ciafrè SA (2009) Reelin affects chain-migration and differentiation of neural precursor cells. Mol Cell Neurosci 42:341–349

    Article  CAS  PubMed  Google Scholar 

  21. Saha B, Jaber M, Gaillard A (2012) Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 6:14. doi:10.3389/fncel.2012.00014

    PubMed  PubMed Central  Google Scholar 

  22. Chang LW (1990) The neurotoxicology and pathology of organomercury, organolead, and organotin. J Toxicol Sci 15:125–151

    Article  CAS  PubMed  Google Scholar 

  23. O’Shaughnessy DJ, Losos GJ (1986) Peripheral and central nervous system lesions caused by triethyl- and trimethyltin salts in rats. Toxicol Pathol 14:141–148

    Article  PubMed  Google Scholar 

  24. Aschner M, Aschner JL (1992) Cellular and molecular effects of trimethyltin and triethyltin: relevance to organotin neurotoxicity. Neurosci Biobehav Rev 16:427–435

    Article  CAS  PubMed  Google Scholar 

  25. Geloso M, Corvino V, Michetti F (2011) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738

    Article  CAS  PubMed  Google Scholar 

  26. Corvino V, Marchese E, Michetti F, Geloso MC (2013) Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 38:240–253

    Article  CAS  PubMed  Google Scholar 

  27. Chang LW (1984) Trimethyltin induced hippocampal lesions at various neonatal ages. Bull Environ Contam Toxicol 33:295–301

    Article  CAS  PubMed  Google Scholar 

  28. Woodruff ML, Baisden RH (1990) Exposure to trimethyltin significantly enhances acetylcholinesterase staining in the rat dentate gyrus. Neurotoxicol Teratol 12:33–39

    Article  CAS  PubMed  Google Scholar 

  29. Geloso MC, Vinesi P, Michetti F (1996) Parvalbumin-immunoreactive neurons are not affected by trimethyltin-induced neurodegeneration in the rat hippocampus. Exp Neurol 139:269–277

    Article  CAS  PubMed  Google Scholar 

  30. Geloso MC, Vinesi P, Michetti F (1997) Calretinin-containing neurons in trimethyltin-induced neurodegeneration in the rat hippocampus: an immunocytochemical study. Exp Neurol 146:67–73

    Article  CAS  PubMed  Google Scholar 

  31. Geloso MC, Vinesi P, Michetti F (1998) Neuronal subpopulations of developing rat hippocampus containing different calcium-binding proteins behave distinctively in trimethyltin-induced neurodegeneration. Exp Neurol 154:645–653

    Article  CAS  PubMed  Google Scholar 

  32. Geloso MC, Corvino V, Cavallo V, Toesca A, Guadagni E, Passalacqua R, Michetti F (2004) Expression of astrocytic nestin in the rat hippocampus during trimethyltin-induced neurodegeneration. Neurosci Lett 357:103–106

    Article  CAS  PubMed  Google Scholar 

  33. Pompili E, Nori SL, Geloso MC, Guadagni E, Corvino V, Michetti F, Fumagalli L (2004) Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Brain Res Mol Brain Res 122:93–98

    Article  CAS  PubMed  Google Scholar 

  34. Latini L, Geloso MC, Corvino V, Giannetti S, Florenzano F, Viscomi MT, Michetti F, Molinari M (2010) Trimethyltin intoxication up-regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. J Neurosci Res 88:500–509

    CAS  PubMed  Google Scholar 

  35. Reali C, Scintu F, Pillai R, Donato R, Michetti F, Sogos V (2005) S100b counteracts effects of the neurotoxicant trimethyltin on astrocytes and microglia. J Neurosci Res 81:677–686

    Article  CAS  PubMed  Google Scholar 

  36. Miller DB, O’Callaghan J (1984) Biochemical, functional and morphological indicators of neurotoxicity: effects of acute administration of trimethyltin to the developing rat. J Pharmacol Exp Ther 231:744–751

    CAS  PubMed  Google Scholar 

  37. Barone S Jr (1993) Developmental differences in neural damage following trimethyl-tin as demonstrated with GFAP immunohistochemistry. Ann N Y Acad Sci 679:306–316

    Article  CAS  PubMed  Google Scholar 

  38. Balaban CD, O’Callaghan JP, Billingsley ML (1988) Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neurotypic and gliotypic proteins. Neuroscience 26:337–361

    Article  CAS  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  40. Corvino V, Geloso MC, Cavallo V, Guadagni E, Passalacqua R, Florenzano F, Giannetti S, Molinari M, Michetti F (2005) Enhanced neurogenesis during trimethyltin-induced neurodegeneration in the hippocampus of the adult rat. Brain Res Bull 65:471–477

    Article  CAS  PubMed  Google Scholar 

  41. Corvino V, Marchese E, Zarkovic N, Zarkovic K, Cindric M, Waeg G, Michetti F, Geloso MC (2011) Distribution and time-course of 4-hydroxynonenal, heat shock protein 110/105 family members and cyclooxygenase-2 expression in the hippocampus of rat during trimethyltin-induced neurodegeneration. Neurochem Res 36:1490–1500

    Article  CAS  PubMed  Google Scholar 

  42. Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, Biamonte F, Mongiovì AM, Michetti F, Geloso MC (2012) The neuroprotective and neurogenic effects of neuro peptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 122:415–426

    Article  CAS  PubMed  Google Scholar 

  43. Monie ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962

    Article  Google Scholar 

  44. Yang F, Wang JC, Han JL, Zhao G, Jiang W (2008) Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus 18:460–468

    Article  PubMed  Google Scholar 

  45. Ramos-Moreno T, Galazo MJ, Porrero C, Martìnez-Cerdeño V, Clasca F (2006) Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur J Neurosci 23:401–422

    Article  PubMed  Google Scholar 

  46. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    Article  CAS  PubMed  Google Scholar 

  47. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  48. Dayer Alexandre G, Ford Abigail A, Kathryn M (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563–572

    Article  CAS  PubMed  Google Scholar 

  49. Dong H, Csernansky CA, Goico B, Csernansky JG (2003) Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci 23:1742–1749

    CAS  PubMed  Google Scholar 

  50. Liu H, Kaur J, Dashtipour K, Kinyamu R, Ribak CE, Friedman LK (2003) Suppression of hippocampal neurogenesis is associated with developmental stage, number of perinatal seizure episodes, and glucocorticosteroid level. Exp Neurol 184(1):196–213

    Article  CAS  PubMed  Google Scholar 

  51. McDonald HY, Wojtowicz JM (2005) Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci Lett 385:70–75

    Article  CAS  PubMed  Google Scholar 

  52. Dell’Anna E, Iuvone L, Calzolari S, Geloso MC (1997) Effect of acetyl-L-carnitine on hyperactivity and spatial memory deficits of rats exposed to neonatal anoxia. Neurosci Lett 223:201–205

    Article  PubMed  Google Scholar 

  53. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    Article  PubMed  PubMed Central  Google Scholar 

  54. Speed HE, Dobrunz LE (2009) Developmental changes in short-term facilitation are opposite at temporoammonic synapses compared to Schaffer collateral synapses onto CA1 pyramidal cells. Hippocampus 19:187–204

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duveau V, Madhusudan A, Caleo M, Knuesel I, Fritschy JA (2011) Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus 21:935–944

    CAS  PubMed  Google Scholar 

  56. Koczyk D (1996) How does trimethyltin affect the brain: facts and hypotheses. Acta Neurobiol Exp 56:587–596

    CAS  Google Scholar 

  57. Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, Esclapez M, Bernard C (2001) Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4:52–62

    Article  CAS  PubMed  Google Scholar 

  58. McCabe BK, Silveira DC, Cilio MR, Cha BH, Liu X, Sogawa Y, Holmes GL (2001) Reduced neurogenesis after neonatal seizures. J Neurosci 21:2094–2103

    CAS  PubMed  Google Scholar 

  59. Shi XY, Wang JW, Lei GF, Sun RP (2007) Morphological and behavioral consequences of recurrent seizures in neonatal rats are associated with glucocorticoid levels. Neurosci Bull 23:83–91

    Article  CAS  PubMed  Google Scholar 

  60. Xiu-Yu S, Ruo-Peng S, Ji-Wen W (2007) Consequences of pilocarpine-induced recurrent seizures in neonatal rats. Brain Dev 29:157–163

    Article  PubMed  Google Scholar 

  61. Bayer SA (1980) Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early post-natal life. J Comp Neurol 190:115–134

    Article  CAS  PubMed  Google Scholar 

  62. Liu X, Tilwalli S, Ye G, Lio PA, Pasternak JF, Trommer BL (2000) Morphologic and electrophysiologic maturation in developing dentate gyrus granule cells. Brain Res 856:202–212

    Article  CAS  PubMed  Google Scholar 

  63. Gould E, Cameron HA (1996) Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev Neurosci 18:22–35

    Article  CAS  PubMed  Google Scholar 

  64. Danzer SC (2008) Postnatal and adult neurogenesis in the development of human disease. Neuroscientist 14:446–458

    Article  PubMed  Google Scholar 

  65. Zhao S, Chai X, Frotscher M (2007) Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosci 29:84–90

    Article  CAS  PubMed  Google Scholar 

  66. Teixeira CM, Martín ED, Sahún I, Masachs N, Pujadas L, Corvelo A, Bosch C, Rossi D, Martinez A, Maldonado R, Dierssen M, Soriano E (2011) Overexpression of Reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder. Neuropsychopharmacology 36:2395–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Teixeira CM, Kron MM, Masachs N, Zhang H, Lagace DC, Martinez A, Reillo I, Duan X, Bosch C, Pujadas L, Brunso L, Song H, Eisch AJ, Borrell V, Howell BW, Parent JM, Soriano E (2012) Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J Neurosci 32:12051–12065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713

    Article  CAS  PubMed  Google Scholar 

  69. Antonucci F, Di Garbo A, Novelli E, Manno I, Sartucci F, Bozzi Y, Caleo M (2008) Botulinum neurotoxin E (BoNT/E) reduces CA1 neuron loss and granule cell dispersion, with no effects on chronic seizures, in a mouse model of temporal lobe epilepsy. Exp Neurol 210:388–401

    Article  CAS  PubMed  Google Scholar 

  70. Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Università Cattolica del S. Cuore to A.T. and to F.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabrizio Michetti or Valentina Corvino.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Fabrizio Michetti and Valentina Corvino share the senior position.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toesca, A., Geloso, M.C., Mongiovì, A.M. et al. Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats. Neurochem Res 41, 1559–1569 (2016). https://doi.org/10.1007/s11064-016-1869-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1869-1

Keywords

Navigation