Skip to main content

The Effects of Ellagic Acid upon Brain Cells: A Mechanistic View and Future Directions

Abstract

Ellagic acid (EA, 2,3,7,8-tetrahydroxy-chromeno; C14H6O8) is a polyphenol derived from fruits (pomegranates, berries) and nuts. EA exhibits antioxidant capacity and induces anti-inflammatory actions in several mammalian tissues. EA has been characterized as a possible neuroprotective agent, but the number of reports is still limited to conclude whether and how EA exerts neuroprotection in humans. In this regard, performing additional studies considering the potential beneficial and/or toxicological roles for EA on brain cells would be an important step towards fully understanding of when and how EA may be securely utilized by humans as a neuroprotective agent. The aim of the present work is to discuss data related to the neuronal and glial effects of EA and the mechanisms underlying such events. Moreover, future directions are suggested as a potential guide to be utilized by researchers interested in investigating the neuronal and glial actions of EA hereafter.

This is a preview of subscription content, access via your institution.

References

  1. Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50:2200–2206

    CAS  PubMed  Article  Google Scholar 

  2. Hwang JM, Cho JS, Kim TH, Lee YI (2010) Ellagic acid protects hepatocytes from damage by inhibiting mitochondrial production of reactive oxygen species. Biomed Pharmacother 64:264–270

    CAS  PubMed  Article  Google Scholar 

  3. García-Niño WR, Zazueta C (2015) Ellagic acid: pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 97:84–103

    PubMed  Article  CAS  Google Scholar 

  4. Lee JH, Won JH, Choi JM, Cha HH, Jang YJ, Park S, Kim HG, Kim HC, Kim DK (2014) Protective effect of ellagic acid on concanavalin A-induced hepatitis via toll-like receptor and mitogen-activated protein kinase/nuclear factor κB signaling pathways. J Agric Food Chem 62:10110–10117

    CAS  PubMed  Article  Google Scholar 

  5. Vieira O, Escargueil-Blanc I, Meilhac O, Basile JP, Laranjinha J, Almeida L, Salvayre R, Nègre-Salvayre A (1998) Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL. Br J Pharmacol 123:565–573

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Yu YM, Wang ZH, Liu CH, Chen CS (2007) Ellagic acid inhibits IL-1beta-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 97:692–698

    CAS  PubMed  Article  Google Scholar 

  7. Papoutsi Z, Kassi E, Chinou I, Halabalaki M, Skaltsounis LA, Moutsatsou P (2008) Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 99:715–722

    CAS  PubMed  Article  Google Scholar 

  8. Lee WJ, Ou HC, Hsu WC, Chou MM, Tseng JJ, Hsu SL, Tsai KL, Sheu WH (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg 52:1290–1300

    PubMed  Article  Google Scholar 

  9. Ou HC, Lee WJ, Lee SD, Huang CY, Chiu TH, Tsai KL, Hsu WC, Sheu WH (2010) Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol 248:134–143

    CAS  PubMed  Article  Google Scholar 

  10. Khanduja KL, Avti PK, Kumar S, Mittal N, Sohi KK, Pathak CM (2006) Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism. Biochim Biophys Acta 1760:283–289

    CAS  PubMed  Article  Google Scholar 

  11. El-Garhy AM, Abd El-Raouf OM, El-Sayeh BM, Fawzy HM, Abdallah DM (2014) Ellagic acid antiinflammatory and antiapoptotic potential mediate renoprotection in cisplatin nephrotoxic rats. J Biochem Mol Toxicol 28:472–479

    CAS  PubMed  Article  Google Scholar 

  12. Vijaya Padma V, Kalai Selvi P, Sravani S (2014) Protective effect of ellagic acid against TCDD-induced renal oxidative stress: modulation of CYP1A1 activity and antioxidant defense mechanisms. Mol Biol Rep 41:4223–4232

    CAS  PubMed  Article  Google Scholar 

  13. Saba KS, Parvez S, Chaudhari B, Ahmad F, Anjum S, Raisuddin S (2013) Ellagic acid attenuates bleomycin and cyclophosphamide-induced pulmonary toxicity in Wistar rats. Food Chem Toxicol 58:210–219

    CAS  PubMed  Article  Google Scholar 

  14. Gauliard B, Grieve D, Wilson R, Crozier A, Jenkins C, Mullen WD, Lean M (2008) The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells. J Med Food 11:382–384

    CAS  PubMed  Article  Google Scholar 

  15. Goodwin EC, Atwood WJ, DiMaio D (2009) High-throughput cell-based screen for chemicals that inhibit infection by simian virus 40 and human polyomaviruses. J Virol 83:5630–5639

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Nohynek LJ, Alakomi HL, Kähkönen MP, Heinonen M, Helander IM, Oksman-Caldentey KM, Puupponen-Pimiä RH (2006) Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 54:18–32

    CAS  PubMed  Article  Google Scholar 

  17. Alfredsson CF, Rendel F, Liang QL, Sundström BE, Nånberg E (2015) Altered sensitivity to ellagic acid in neuroblastoma cells undergoing differentiation with 12-O-tetradecanoylphorbol-13-acetate and all-trans retinoic acid. Biomed Pharmacother 76:39–45

    CAS  PubMed  Article  Google Scholar 

  18. González-Sarrías A, Núñez-Sánchez MÁ, Tomé-Carneiro J, Tomás-Barberán FA, García-Conesa MT, Espín JC (2015) Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key associated molecular hallmarks: microRNA-cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol Nutr Food Res. doi:10.1002/mnfr.201500780

    Google Scholar 

  19. Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J (2015) Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 6:461–471

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Mishra S, Vinayak M (2014) Ellagic acid induces novel and atypical PKC isoforms and promotes caspase-3 dependent apoptosis by blocking energy metabolism. Nutr Cancer 66:675–681

    CAS  PubMed  Article  Google Scholar 

  21. Takagi A, Sai K, Umemura T, Hasegawa R, Kurokawa Y (1995) Inhibitory effects of vitamin E and ellagic acid on 8-hydroxydeoxyguanosine formation in liver nuclear DNA of rats treated with 2-nitropropane. Cancer Lett 91:139–144

    CAS  PubMed  Article  Google Scholar 

  22. Wood AW, Huang MT, Chang RL, Newmark HL, Lehr RE, Yagi H, Sayer JM, Jerina DM, Conney AH (1982) Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occurring plant phenols: exceptional activity of ellagic acid. Proc Natl Acad Sci USA 79:5513–5517

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Mandal S, Ahuja A, Shivapurkar NM, Cheng SJ, Groopman JD, Stoner GD (1987) Inhibition of aflatoxin B1 mutagenesis in Salmonella typhimurium and DNA damage in cultured rat and human tracheobronchial tissues by ellagic acid. Carcinogenesis 8:1651–1656

    CAS  PubMed  Article  Google Scholar 

  24. Smith WA, Freeman JW, Gupta RC (2001) Effect of chemopreventive agents on DNA adduction induced by the potent mammary carcinogen dibenzo[a, l]pyrene in the human breast cells MCF-7. Mutat Res 480–481:97–108

    PubMed  Article  Google Scholar 

  25. Khanduja KL, Gandhi RK, Pathania V, Syal N (1999) Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem Toxicol 37:313–318

    CAS  PubMed  Article  Google Scholar 

  26. Miller C, Castonguay A, Teel RW (1996) Modulation of the mutagenicity and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by phenolic compounds. Mutat Res 368:221–233

    CAS  PubMed  Article  Google Scholar 

  27. Zahin M, Ahmad I, Gupta RC, Aqil F (2014) Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo[a]pyrene induced DNA adducts. Biomed Res Int 2014:467465

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Grossi MR, Berni A, Pepe G, Filippi S, Meschini R, Papeschi C, Natarajan AT, Palitti F (2014) Evaluation of the effects of ellagic acid (EA) on 7,12-dimethylbenz(α) anthracene (DMBA) induced micronuclei in mammalian cells in vitro and in vivo. Toxicol Lett 224:240–245

    CAS  PubMed  Article  Google Scholar 

  29. Seeram NP, Lee R, Heber D (2004) Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin Chim Acta 348:63–68

    CAS  PubMed  Article  Google Scholar 

  30. Seeram NP, Henning SM, Zhang Y, Suchard M, Li Z, Heber D (2006) Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr 136:2481–2485

    CAS  PubMed  Google Scholar 

  31. Mertens-Talcott SU, Jilma-Stohlawetz P, Rios J, Hingorani L, Derendorf H (2006) Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem 54:8956–8961

    CAS  PubMed  Article  Google Scholar 

  32. Cerdá B, Cerón JJ, Tomás-Barberán FA, Espín JC (2003) Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J Agric Food Chem 51:3493–3501

    PubMed  Article  CAS  Google Scholar 

  33. Lei F, Xing DM, Xiang L, Zhao YN, Wang W, Zhang LJ, Du LJ (2003) Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J Chromatogr B Analyt Technol Biomed Life Sci 796:189–194

    CAS  PubMed  Article  Google Scholar 

  34. Yan L, Yin P, Ma C, Liu Y (2014) Method development and validation for pharmacokinetic and tissue distributions of ellagic acid using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Molecules 19:18923–18935

    PubMed  Article  CAS  Google Scholar 

  35. Yang CS, Tzou BC, Liu YP, Tsai MJ, Shyue SK, Tzeng SF (2008) Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. J Cell Biochem 103:825–834

    CAS  PubMed  Article  Google Scholar 

  36. Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244

    CAS  PubMed  Article  Google Scholar 

  37. Ahmed S, Rahman A, Saleem M, Athar M, Sultana S (1999) Ellagic acid ameliorates nickel induced biochemical alterations: diminution of oxidative stress. Hum Exp Toxicol 18:691–698

    CAS  PubMed  Article  Google Scholar 

  38. Rojanathammanee L, Puig KL, Combs CK (2013) Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease. J Nutr 143:597–605

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 219:64–75

    CAS  PubMed  Article  Google Scholar 

  40. Zhou E, Fu Y, Wei Z, Yang Z (2014) Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model. Food Funct 5:2106–2112

    CAS  PubMed  Article  Google Scholar 

  41. Anitha P, Priyadarsini RV, Kavitha K, Thiyagarajan P, Nagini S (2013) Ellagic acid coordinately attenuates Wnt/β-catenin and NF-κB signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis. Eur J Nutr 52:75–84

    CAS  PubMed  Article  Google Scholar 

  42. Rosillo MA, Sánchez-Hidalgo M, Cárdeno A, Aparicio-Soto M, Sánchez-Fidalgo S, Villegas I, de la Lastra CA (2012) Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res 66:235–242

    CAS  PubMed  Article  Google Scholar 

  43. Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697

    CAS  PubMed  Article  Google Scholar 

  44. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89:667–676

    CAS  Article  Google Scholar 

  45. Xu Y, Kiningham KK, Devalaraja MN, Yeh CC, Majima H, Kasarskis EJ, St Clair DK (1999) An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol 18:709–722

    CAS  PubMed  Article  Google Scholar 

  46. Sompol P, Xu Y, Ittarat W, Daosukho C, St Clair D (2006) NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis. J Mol Neurosci 29:279–288

    CAS  PubMed  Article  Google Scholar 

  47. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Lopes FM, Schröder R, da Frota ML, Zanotto-Filho A Jr, Müller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, da Fernandes MC, Klamt F (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94

    CAS  PubMed  Article  Google Scholar 

  49. Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123:1086–1092

    CAS  Google Scholar 

  50. Schneider L, Giordano S, Zelickson BR, Johnson M, Benavides G, Ouyang X, Fineberg N, Darley-Usmar VM, Zhang J (2011) Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 51:2007–2017

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Feng Y, Yang SG, Du XT, Zhang X, Sun XX, Zhao M, Sun GY, Liu RT (2009) Ellagic acid promotes Abeta42 fibrillization and inhibits Abeta42-induced neurotoxicity. Biochem Biophys Res Commun 390:1250–1254

    CAS  PubMed  Article  Google Scholar 

  52. Kong J, Ren G, Jia N, Wang Y, Zhang H, Zhang W, Chen B, Cao Y (2013) Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer’s disease. Eur Neurol 70:233–241

    CAS  PubMed  Article  Google Scholar 

  53. Kwon SH, Ma SX, Hwang JY, Lee SY, Jang CG (2015) Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta 25–35 neurotoxicity. Neuroscience 304:14–28

    CAS  PubMed  Article  Google Scholar 

  54. Li Y, Dai YB, Sun JY, Xiang Y, Yang J, Dai SY, Zhang X (2015) Neuroglobin attenuates beta amyloid-induced apoptosis through inhibiting caspases activity by activating PI3K/Akt signaling pathway. J Mol Neurosci. doi:10.1007/s12031-015-0645-z

    PubMed Central  Google Scholar 

  55. Kabiraj P, Marin JE, Varela-Ramirez A, Zubia E, Narayan M (2014) Ellagic acid mitigates SNO-PDI induced aggregation of Parkinsonian biomarkers. ACS Chem Neurosci 5:1209–1220

    CAS  PubMed  Article  Google Scholar 

  56. Oberdoerster J, Rabin RA (1999) NGF-differentiated and undifferentiated PC12 cells vary in induction of apoptosis by ethanol. Life Sci 64:PL267–PL272

    CAS  Article  Google Scholar 

  57. Hayakawa N, Shiozaki M, Shibata M, Koike M, Uchiyama Y, Matsuura N, Gotow T (2013) Resveratrol affects undifferentiated and differentiated PC12 cells differently, particularly with respect to possible differences in mitochondrial and autophagic functions. Eur J Cell Biol 92:30–43

    CAS  PubMed  Article  Google Scholar 

  58. Pera M, Camps P, Muñoz-Torrero D, Perez B, Badia A, Clos Guillen MV (2013) Undifferentiated and differentiated PC12 cells protected by huprines against injury induced by hydrogen peroxide. PLoS One 8:e74344

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Tabopda TK, Ngoupayo J, Liu JW, Mitaine-Offer AC, Ngadjui BT, Lacaille-Dubois MA, Luu B (2009) Induction of neuronal differentiation in neurosphere stem cells by ellagic acid derivatives. Nat Prod Commun 4:517–520

    CAS  PubMed  Google Scholar 

  60. Fjaeraa C, Nånberg E (2009) Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomed Pharmacother 63:254–261

    CAS  PubMed  Article  Google Scholar 

  61. Seidenfaden R, Hildebrandt H (2001) Retinoic acid-induced changes in polysialyltransferase mRNA expression and NCAM polysialylation in human neuroblastoma cells. J Neurobiol 46:11–28

    CAS  PubMed  Article  Google Scholar 

  62. Linnala A, Lehto VP, Virtanen I (1997) Neuronal differentiation in SH-SY5Y human neuroblastoma cells induces synthesis and secretion of tenascin and upregulation of alpha(v) integrin receptors. J Neurosci Res 49:53–63

    CAS  PubMed  Article  Google Scholar 

  63. Lasorella A, Iavarone A, Israel MA (1995) Differentiation of neuroblastoma enhances Bcl-2 expression and induces alterations of apoptosis and drug resistance. Cancer Res 55:4711–4716

    CAS  PubMed  Google Scholar 

  64. Tieu K, Zuo DM, Yu PH (1999) Differential effects of staurosporine and retinoic acid on the vulnerability of the SH-SY5Y neuroblastoma cells: involvement of bcl-2 and p53 proteins. J Neurosci Res 58:426–435

    CAS  PubMed  Article  Google Scholar 

  65. Alfredsson CF, Ding M, Liang QL, Sundström BE, Nånberg E (2014) Ellagic acid induces a dose- and time-dependent depolarization of mitochondria and activation of caspase-9 and -3 in human neuroblastoma cells. Biomed Pharmacother 68:129–135

    CAS  PubMed  Article  Google Scholar 

  66. Hagiwara Y, Kasukabe T, Kaneko Y, Niitsu N, Okabe-Kado J (2010) Ellagic acid, a natural polyphenolic compound, induces apoptosis and potentiates retinoic acid-induced differentiation of human leukemia HL-60 cells. Int J Hematol 92:136–143

    CAS  PubMed  Article  Google Scholar 

  67. Malik A, Afaq S, Shahid M, Akhtar K, Assiri A (2011) Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pac J Trop Med 4:550–555

    CAS  PubMed  Article  Google Scholar 

  68. Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345:1250256

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Mathur A, Vallano ML (2000) 2,2′,3,3′,4,4′-Hexahydroxy-1,1′-biphenyl-6,6′-dimethanol dimethyl ether (HBDDE)-induced neuronal apoptosis independent of classical protein kinase C alpha or gamma inhibition. Biochem Pharmacol 60:809–815

    CAS  PubMed  Article  Google Scholar 

  70. Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y (2010) A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31:4157–4166

    CAS  PubMed  Article  Google Scholar 

  71. Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu MA (2003) N-acylated chitosan: hydrophobic matrices for controlled drug release. J Control Release 93:1–13

    PubMed  Article  CAS  Google Scholar 

  72. Kim S, Gaber MW, Zawaski JA, Zhang F, Richardson M, Zhang XA, Yang Y (2009) The inhibition of glioma growth in vitro and in vivo by a chitosan/ellagic acid composite biomaterial. Biomaterials 30:4743–4751

    CAS  PubMed  Article  Google Scholar 

  73. Arulmozhi V, Pandian K, Mirunalini S (2013) Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 110:313–320

    CAS  PubMed  Article  Google Scholar 

  74. Kim S, Liu Y, Gaber MW, Bumgardner JD, Haggard WO, Yang Y (2009) Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J Biomed Mater Res B Appl Biomater 90:145–155

    PubMed  Google Scholar 

  75. Hassoun EA, Vodhanel J, Abushaban A (2004) The modulatory effects of ellagic acid and vitamin E succinate on TCDD-induced oxidative stress in different brain regions of rats after subchronic exposure. J Biochem Mol Toxicol 18:196–203

    CAS  PubMed  Article  Google Scholar 

  76. Henshel DS, Martin JW, Norstrom R, Whitehead P, Steeves JD, Cheng KM (1995) Morphometric abnormalities in brains of great blue heron hatchlings exposed in the wild to PCDDs. Environ Health Perspect 103(Suppl 4):61–66

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Neuberger M, Kundi M, Jäger R (1998) Chloracne and morbidity after dioxin exposure (preliminary results). Toxicol Lett 96–97:347–350

    PubMed  Article  Google Scholar 

  78. Klawans HL (1987) Dystonia and tremor following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mov Disord 2:255–261

    CAS  PubMed  Article  Google Scholar 

  79. Brouwer A, Ahlborg UG, Van den Berg M, Birnbaum LS, Boersma ER, Bosveld B, Denison MS, Gray LE, Hagmar L, Holene E et al (1995) Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol 293:1–40

    CAS  PubMed  Article  Google Scholar 

  80. Bondy SC, Naderi S (1994) Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol 48:155–159

    CAS  PubMed  Article  Google Scholar 

  81. Hrycay EG, Bandiera SM (2015) Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv Pharmacol 74:35–84

    PubMed  Article  Google Scholar 

  82. Uzar E, Alp H, Cevik MU, Fırat U, Evliyaoglu O, Tufek A, Altun Y (2012) Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol Sci 33:567–574

    PubMed  Article  Google Scholar 

  83. Litvinov D, Mahini H, Garelnabi M (2012) Antioxidant and anti-inflammatory role of paraoxonase 1: implication in arteriosclerosis diseases. N Am J Med Sci 4:523–532

    PubMed  PubMed Central  Article  Google Scholar 

  84. Boesch-Saadatmandi C, Rimbach G, Schrader C, Kofler BM, Armah CK, Minihane AM (2010) Determinants of paraoxonase activity in healthy adults. Mol Nutr Food Res 54:1842–1850

    CAS  PubMed  Article  Google Scholar 

  85. Farbood Y, Sarkaki A, Dianat M, Khodadadi A, Haddad MK, Mashhadizadeh S (2015) Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci 124:120–127

    CAS  PubMed  Article  Google Scholar 

  86. Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203:17–20

    CAS  PubMed  Article  Google Scholar 

  87. Ross FM, Allan SM, Rothwell NJ, Verkhratsky A (2003) A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol 144:61–67

    CAS  PubMed  Article  Google Scholar 

  88. Vereker E, Campbell V, Roche E, McEntee E, Lynch MA (2000) Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem 275:26252–26258

    CAS  PubMed  Article  Google Scholar 

  89. Ban E, Milon G, Prudhomme N, Fillion G, Haour F (1991) Receptors for interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience 43:21–30

    CAS  PubMed  Article  Google Scholar 

  90. Parnet P, Amindari S, Wu C, Brunke-Reese D, Goujon E, Weyhenmeyer JA, Dantzer R, Kelley KW (1994) Expression of type I and type II interleukin-1 receptors in mouse brain. Brain Res Mol Brain Res 27:63–70

    CAS  PubMed  Article  Google Scholar 

  91. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci 18:130–136

    CAS  PubMed  Article  Google Scholar 

  92. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32:1106–1115

    CAS  PubMed  Article  Google Scholar 

  93. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700

    CAS  PubMed  Google Scholar 

  94. Pang X, Li T, Feng L, Zhao J, Zhang X, Liu J (2014) Ellagic acid-induced thrombotic focal cerebral ischemic model in rats. J Pharmacol Toxicol Methods 69:217–222

    CAS  PubMed  Article  Google Scholar 

  95. Seeram NP, Zhang Y, McKeever R, Henning SM, Lee RP, Suchard MA, Li Z, Chen S, Thames G, Zerlin A, Nguyen M, Wang D, Dreher M, Heber D (2008) Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects. J Med Food 11:390–394

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Banihani S, Swedan S, Alguraan Z (2013) Pomegranate and type 2 diabetes. Nutr Res 33:341–348

    CAS  PubMed  Article  Google Scholar 

  97. Vlachojannis C, Zimmermann BF, Chrubasik-Hausmann S (2015) Efficacy and safety of pomegranate medicinal products for cancer. Evid Based Complement Alternat Med 2015:258598

    PubMed  PubMed Central  Article  Google Scholar 

  98. Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52:507–526

    CAS  PubMed  Article  Google Scholar 

  99. Mercurio F, Manning AM (1999) NF-kappaB as a primary regulator of the stress response. Oncogene 18:6163–6171

    CAS  PubMed  Article  Google Scholar 

  100. Loren DJ, Seeram NP, Schulman RN, Holtzman DM (2005) Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr Res 57:858–864

    CAS  PubMed  Article  Google Scholar 

  101. Celik I, Temur A, Isik I (2009) Hepatoprotective role and antioxidant capacity of pomegranate (Punica granatum) flowers infusion against trichloroacetic acid-exposed in rats. Food Chem Toxicol 47:145–149

    CAS  PubMed  Article  Google Scholar 

  102. Bookheimer SY, Renner BA, Ekstrom A, Li Z, Henning SM, Brown JA, Jones M, Moody T, Small GW (2013) Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evid Based Complement Alternat Med 2013:946298

    PubMed  PubMed Central  Article  Google Scholar 

  103. Hajipour S, Sarkaki A, Mohammad S, Mansouri T, Pilevarian A, RafieiRad M (2014) Motor and cognitive deficits due to permanent cerebral hypoperfusion/ischemia improve by pomegranate seed extract in rats. Pak J Biol Sci 17:991–998

    PubMed  Article  Google Scholar 

  104. Essa MM, Subash S, Akbar M, Al-Adawi S, Guillemin GJ (2015) Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One 10:e0120964

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. Subash S, Essa MM, Al-Asmi A, Al-Adawi S, Vaishnav R, Braidy N, Manivasagam T, Guillemin GJ (2014) Pomegranate from Oman alleviates the brain oxidative damage in transgenic mouse model of Alzheimer’s disease. J Tradit Complement Med 4:232–238

    PubMed  PubMed Central  Article  Google Scholar 

  106. Subash S, Braidy N, Essa MM, Zayana AB, Ragini V, Al-Adawi S, Al-Asmi A, Guillemin GJ (2015) Long-term (15 mo) dietary supplementation with pomegranates from Oman attenuates cognitive and behavioral deficits in a transgenic mice model of Alzheimer’s disease. Nutrition 31:223–229

    CAS  PubMed  Article  Google Scholar 

  107. Braidy N, Selvaraju S, Essa MM, Vaishnav R, Al-Adawi S, Al-Asmi A, Al-Senawi H, Abd Alrahman Alobaidy A, Lakhtakia R, Guillemin GJ (2013) Neuroprotective effects of a variety of pomegranate juice extracts against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Oxid Med Cell Longev 2013:685909

    PubMed  PubMed Central  Article  Google Scholar 

  108. Ahmed MA, El Morsy EM, Ahmed AA (2014) Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life Sci 110:61–69

    CAS  PubMed  Article  Google Scholar 

  109. Pirinççioğlu M, Kızıl G, Kızıl M, Kanay Z, Ketani A (2014) The protective role of pomegranate juice against carbon tetrachloride-induced oxidative stress in rats. Toxicol Ind Health 30:910–918

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto de Oliveira.

Ethics declarations

Conflict of interest

None to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R. The Effects of Ellagic Acid upon Brain Cells: A Mechanistic View and Future Directions. Neurochem Res 41, 1219–1228 (2016). https://doi.org/10.1007/s11064-016-1853-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1853-9

Keywords

  • Ellagic acid
  • Neuron
  • Glia
  • Brain
  • Antioxidant