Neurochemical Research

, Volume 41, Issue 6, pp 1401–1409 | Cite as

Gastrodin Attenuates Cognitive Deficits Induced by 3,3′-Iminodipropionitrile

  • Xiaona Wang
  • Peng Li
  • Jingsheng Liu
  • Xunbo Jin
  • Lianjun Li
  • Dong ZhangEmail author
  • Peng SunEmail author
Original Paper


3,3′-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce persistent neurotoxicity, and therefore cause dyskinesia and cognitive impairments. Gastrodin, a main bioactive ingredient of Gastrodia elata Blume, is shown to greatly improve cognitive function. The aim of this study was to further determine whether administration of gastrodin can ameliorate IDPN-induced cognitive deficits in the Morris water maze (MWM) and novel object recognition (NOR) task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (100 mg/kg/day, for 8 days) significantly impaired spatial and object recognition memory and that repeated treatment with gastrodin (150 mg/kg/day, for 6 weeks) could effectively alleviate the IDPN-induced cognitive impairments as indicated by increased spatial memory and discrimination ratio in the MWM and NOR tests. Gastrodin treatment also reverted IDPN-induced decreases of γ-aminobutyric acid (GABA) levels and increases of a2 GABAA receptor protein expression in the prefrontal cortex and hippocampus of IDPN-treated rats. These results suggest that gastrodin treatment may provide a novel pharmacological strategy for IDPN-induced cognitive deficits, which was mediated, at least in part, by normalizing the GABAergic system.


Gastrodin 3,3′-Iminodipropionitrile Cognitive deficits γ-Aminobutyric acid a2 GABAA receptor 



This work was supported by the Natural Science Foundation of Shandong Province (ZR2015HQ002), Medical and Health Technology Development Program of Shandong Province (2014WS0091), Key Research and Development Plan of Shandong Province (2015GSF118096) and National Natural Science Foundation of China (81572534).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Takahashi N, Hamada N, Ishizuka B (2014) Acute toxic effects of 3,3′-iminodipropionitrile on hypothalamic-pituitary-gonadal axis in male rats. Reprod Toxicol 43:19–25CrossRefPubMedGoogle Scholar
  2. 2.
    Al Kadasah S, Al Mutairy A, Siddiquei M, Khan H, Abdulwahid Arif I, Al Moutaery K et al (2009) Pentoxifylline attenuates iminodipropionitrile-induced behavioral abnormalities in rats. Behav Pharmacol 20:356–360CrossRefPubMedGoogle Scholar
  3. 3.
    Crofton KM, Peele DB, Stanton ME (1993) Developmental neurotoxicity following neonatal exposure to 3,3′-iminodipropionitrile in the rat. Neurotoxicol Teratol 15:117–129CrossRefPubMedGoogle Scholar
  4. 4.
    Zmarowski A, Beekhuijzen M, Lensen J, Emmen H (2012) Differential performance of Wistar Han and Sprague Dawley rats in behavioral tests: differences in baseline behavior and reactivity to positive control agents. Reprod Toxicol 34:192–203CrossRefPubMedGoogle Scholar
  5. 5.
    Itahashi M, Abe H, Tanaka T, Mizukami S, Kikuchihara Y, Yoshida T et al (2015) Maternal exposure to 3,3′-iminodipropionitrile targets late-stage differentiation of hippocampal granule cell lineages to affect brain-derived neurotrophic factor signaling and interneuron subpopulations in rat offspring. J Appl Toxicol 35:884–894CrossRefPubMedGoogle Scholar
  6. 6.
    Peele D, Allison S, Crofton K (1990) Learning and memory deficits in rats following exposure to 3,3′-iminodipropionitrile. Toxicol Appl Pharmacol 105:321–332CrossRefPubMedGoogle Scholar
  7. 7.
    Toth E, Lajtha A, Vizi ES (1997) Effects of iminodipropionitrile on cerebral amino acid levels. Brain Res Bull 44:715–718CrossRefPubMedGoogle Scholar
  8. 8.
    Vivanco F, Ramos F, Jimenez-Diaz C (1966) Determination of gamma-aminobutyric acid and other free amino acids in whole brains of rats poisoned with beta, beta’-iminodipropionitrile and alpha, gamma-diaminobutyric acid with, or without, administration of thyroxine. J Neurochem 13:1461–1467CrossRefPubMedGoogle Scholar
  9. 9.
    Gianutsos G, Suzdak PD (1985) Neurochemical effects of IDPN in the mouse brain. Neurotoxicology 6:159–164PubMedGoogle Scholar
  10. 10.
    Tews JK, Kopf GM, Stone WE (1968) Effects of beta, beta’-iminodipropionitrile on cerebral constituents and on cortical electrical activity. Int J Neuropharmacol 7:29–34CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang W, Yu W, Wang D, Wei L, Lee M, Wang S (2014) Effect of “jian-pi-zhi-dong decoction” on gamma-aminobutyric Acid in a mouse model of tourette syndrome. Evid Based Complement Alternat Med 2014:407509PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen PZ, Jiang HH, Wen B, Ren SC, Chen Y, Ji WG et al (2014) Gastrodin suppresses the amyloid β-induced increase of spontaneous discharge in the entorhinal cortex of rats. Neural Plast 2014:320937PubMedPubMedCentralGoogle Scholar
  13. 13.
    An S-J, Park S-K, Hwang IK, Choi SY, Kim SK, Kwon O-S et al (2003) Gastrodin decreases immunoreactivities of γ-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J Neurosci Res 71:534–543CrossRefPubMedGoogle Scholar
  14. 14.
    Manavalan A, Ramachandran U, Sundaramurthi H, Mishra M, Sze S, Hu J et al (2012) Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. Int J Biochem Mol Biol 3:219–241PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q (2014) Gastrodin protects against MPP+-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75:79–88CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao X, Zou Y, Xu H, Fan L, Guo H, Li X et al (2012) Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway. Brain Res 1482:13–21CrossRefPubMedGoogle Scholar
  17. 17.
    Song C, Fang S, Lv G, Mei X (2013) Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord. Neural Regen Res 8:1383–1389PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang X, Yan S, Wang A, Li Y, Zhang F (2014) Gastrodin ameliorates memory deficits in 3,3′-Iminodipropionitrile-induced rats: possible involvement of dopaminergic system. Neurochem Res 39:1458–1466CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Tan Y, Zhang F (2015) Ameliorative effect of gastrodin on 3,3′-iminodipropionitrile-induced memory impairment in rats. Neurosci Lett 594:40–45CrossRefPubMedGoogle Scholar
  20. 20.
    Hu Y, Li C, Shen W (2014) Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology 34:370–377PubMedGoogle Scholar
  21. 21.
    Yong W, Xing T, Wang S, Chen L, Hu P, Li C et al (2009) Protective effects of gastrodin on lead-induced synaptic plasticity deficits in rat hippocampus. Planta Med 75:1112–1117CrossRefPubMedGoogle Scholar
  22. 22.
    Kalueff A, Nutt D (1996-1997) Role of GABA in memory and anxiety. Depress Anxiety 4:10–100Google Scholar
  23. 23.
    Thanapreedawat P, Kobayashi H, Inui N, Sakamoto K, Kim M, Yoto A et al (2013) GABA affects novel object recognition memory and working memory in rats. J Nutr Sci Vitaminol 59:152–157CrossRefPubMedGoogle Scholar
  24. 24.
    Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20:886–896CrossRefPubMedGoogle Scholar
  25. 25.
    Sekine S, Matsumoto S, Issiki A, Kitamura T, Yamada J, Watanabe Y (2006) Changes in expression of GABAA α4 subunit mRNA in the brain under anesthesia induced by volatile and intravenous anesthetics. Neurochem Res 31:439–448CrossRefPubMedGoogle Scholar
  26. 26.
    Uusi-Oukari M, Korpi E (2010) Regulation of GABAA receptor subunit expression by pharmacological agents. Pharmacol Rev 62:97–135CrossRefPubMedGoogle Scholar
  27. 27.
    Lewis D, Cho R, Carter C, Eklund K, Forster S, Kelly M et al (2008) Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry 165:1585–1593CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Park Y-M, Lee B-G, Park S-H, Oh H-G, Kang Y-G, Kim O-J et al (2015) Prolonged oral administration of Gastrodia elata extract improves spatial learning and memory of scopolamine-treated rats. Lab Anim Res 31:69–77CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhu L, Guan H, Cui C, Tian S, Yang DA, Wang X et al (2012) Gastrodin inhibits cell proliferation in vascular smooth muscle cells and attenuates neointima formation in vivo. Int J Mol Med 30:1034–1040PubMedPubMedCentralGoogle Scholar
  30. 30.
    Tariq M, Khan HA, Siddiquei MM, Al Moutaery K, Al Deeb S (2007) Protective effect of hydrocortisone on iminodipropionitrile-induced neurotoxicity in rats. Basic Clin Pharmacol Toxicol 100:176–181CrossRefPubMedGoogle Scholar
  31. 31.
    Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59CrossRefPubMedGoogle Scholar
  32. 32.
    Lynch G, Palmer LC, Gall CM (2011) The likelihood of cognitive enhancement. Pharmacol Biochem Behav 99:116–129CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704CrossRefPubMedGoogle Scholar
  34. 34.
    Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254CrossRefPubMedGoogle Scholar
  35. 35.
    Zeng X, Zhang Y, Zhang S, Zheng X (2007) A microdialysis study of effects of gastrodin on neurochemical changes in the ischemic/reperfused rat cerebral hippocampus. Biol Pharm Bull 30:801–804CrossRefPubMedGoogle Scholar
  36. 36.
    Cloke JM, Winters BD (2015) α4β2 nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: implications for cognitive dysfunction in schizophrenia. Neuropharmacology 90:42–52CrossRefPubMedGoogle Scholar
  37. 37.
    Piyabhan P, Wetchateng T, Sireeratawong S (2013) Cognitive enhancement effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDA receptor immunodensity in the prefrontal cortex and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai 96:231–238PubMedGoogle Scholar
  38. 38.
    Cao G, Zhu J, Zhong Q, Shi C, Dang Y, Han W et al (2013) Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology 67:144–154CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Warburton EC, Brown MW (2015) Neural circuitry for rat recognition memory. Behav Brain Res 285:131–139CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wu Z, Guo Z, Gearing M, Chen G (2014) Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model. Nat Commun 5:4159Google Scholar
  41. 41.
    Volk D, Pierri J, Fritschy J, Auh S, Sampson A, Lewis D (2002) Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 12:1063–1070CrossRefPubMedGoogle Scholar
  42. 42.
    Castner SA, Arriza JL, Roberts JC, Mrzljak L, Christian EP, Williams GV (2010) Reversal of ketamine-induced working memory impairments by the GABAAα2/3 agonist TPA023. Biol Psychiatry 67:998–1001CrossRefPubMedGoogle Scholar
  43. 43.
    Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M et al (2008) GABAA Receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS One 3:e3029CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang X-L, Xing G-H, Hong B, Li X-M, Zou Y, Zhang X-J et al (2014) Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson’s disease: involvement of ERK1/2–Nrf2 signaling pathway. Life Sci 114:77–85CrossRefPubMedGoogle Scholar
  45. 45.
    Haider S, Khaliq S, Tabassum S, Haleem DJ (2012) Role of somatodendritic and postsynaptic 5-HT1A receptors on learning and memory functions in rats. Neurochem Res 37:2161–2166CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of PhysiologyShandong University School of MedicineJinanPeople’s Republic of China
  2. 2.Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong UniversityShandong University School of MedicineJinanPeople’s Republic of China
  3. 3.Department of Urology, North China Petroleum Administration Bureau General HospitalShandong University School of MedicineRenqiuPeople’s Republic of China

Personalised recommendations