Skip to main content

Advertisement

Log in

Intranasal Delivery of Recombinant NT4-NAP/AAV Exerts Potential Antidepressant Effect

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study was designed to construct a recombinant adeno-associated virus (rAAV) which can express NAP in the brain and examine whether this virus can produce antidepressant effects on C57 BL/6 mice that had been subjected to open field test and forced swimming test, via nose-to-brain pathway. When the recombinant plasmid pGEM-T Easy/NT4-NAP was digested by EcoRI, 297 bp fragments can be obtained and NT4-NAP sequence was consistent with the designed sequence confirmed by DNA sequencing. When the recombinant plasmid pSSCMV/NT4-NAP was digested by EcoRI, 297 bp fragments is visible. Immunohistochemical staining of fibroblasts revealed that expression of NAP was detected in NT4-NAP/AAV group. Intranasal delivery of NT4-NAP/AAV significantly reduced immobility time when the FST was performed after 1 day from the last administration. The effects observed in the FST could not be attributed to non-specific increases in activity since intranasal delivery of NT4-NAP/AAV did not alter the behavior of the mice during the open field test. The results indicated that a recombinant AAV vector which could express NAP in cells was successfully constructed and NAP may be a potential target for therapeutic action of antidepressant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kessler RC et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105

    Article  PubMed  Google Scholar 

  2. Rosenzweig-Lipson S et al (2007) Differentiating antidepressants of the future: efficacy and safety. Pharmacol Ther 113(1):134–153

    Article  CAS  PubMed  Google Scholar 

  3. Thase ME, Entsuah AR, Rudolph RL (2001) Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br J Psychiatry 178:234–241

    Article  CAS  PubMed  Google Scholar 

  4. Bassan M et al (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem 72(3):1283–1293

    Article  CAS  PubMed  Google Scholar 

  5. Magen I, Gozes I (2014) Davunetide: peptide therapeutic in neurological disorders. Curr Med Chem 21(23):2591–2598

    Article  CAS  PubMed  Google Scholar 

  6. Offen D et al (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res 854(1–2):257–262

    Article  CAS  PubMed  Google Scholar 

  7. Fleming SM et al (2011) A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing alpha-synuclein shows improvement in motor function and reduction of alpha-synuclein inclusions. Mol Cell Neurosci 46(3):597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jouroukhin Y, Ostritsky R, Gozes I (2012) D-NAP prophylactic treatment in the SOD mutant mouse model of amyotrophic lateral sclerosis: review of discovery and treatment of tauopathy. J Mol Neurosci 48(3):597–602

    Article  CAS  PubMed  Google Scholar 

  9. Merenlender-Wagner A et al (2010) NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse—a microtubule-deficient model of schizophrenia. Peptides 31(7):1368–1373

    Article  CAS  PubMed  Google Scholar 

  10. Gozes I et al (2002) NAP accelerates the performance of normal rats in the water maze. J Mol Neurosci 19(1–2):167–170

    CAS  PubMed  Google Scholar 

  11. Morimoto BH et al (2009) Davunetide pharmacokinetics and distribution to brain after intravenous or intranasal administration to rat. Chim Oggi 27(2):16–20

    Google Scholar 

  12. Serlin Y et al (2015) Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 38:2–6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Holman BL (1972) The blood brain barrier: anatomy and physiology. Prog Nucl Med 1:236–248

    CAS  PubMed  Google Scholar 

  14. Stieger K et al (2009) Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther 17(3):516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morimoto BH et al (2013) Davunetide: a review of safety and efficacy data with a focus on neurodegenerative diseases. Expert Rev Clin Pharmacol 6(5):483–502

    Article  CAS  PubMed  Google Scholar 

  16. Gozes I et al (2005) NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Rev 11(4):353–368

    Article  CAS  PubMed  Google Scholar 

  17. Vasil Yeva NA, Murzina GB, Pivovarov AS (2015) Habituation-like decrease of acetylcholine-induced inward current in helix command neurons: role of microtubule motor proteins. Cell Mol Neurobiol 35(5):703–712

    Article  CAS  Google Scholar 

  18. Wong GT, Chang RC, Law AC (2013) A breach in the scaffold: the possible role of cytoskeleton dysfunction in the pathogenesis of major depression. Ageing Res Rev 12(1):67–75

    Article  CAS  PubMed  Google Scholar 

  19. Lalatsa A, Schatzlein AG, Uchegbu IF (2014) Strategies to deliver peptide drugs to the brain. Mol Pharm 11(4):1081–1093

    Article  CAS  PubMed  Google Scholar 

  20. Graff CL, Pollack GM (2005) Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 94(6):1187–1195

    Article  CAS  PubMed  Google Scholar 

  21. Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379(1):146–157

    Article  CAS  PubMed  Google Scholar 

  22. Vaka SRK et al (2012) Delivery of brain-derived neurotrophic factor via nose-to-brain pathway. Pharm Res 29(2):441–447

    Article  CAS  PubMed  Google Scholar 

  23. Dufes C et al (2003) Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm 255(1–2):87–97

    Article  CAS  PubMed  Google Scholar 

  24. Yu H, Kim K (2009) Direct nose-to-brain transfer of a growth hormone releasing neuropeptide, hexarelin after intranasal administration to rabbits. Int J Pharm 378(1–2):73–79

    Article  CAS  PubMed  Google Scholar 

  25. Mittal D et al (2014) Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 21(2):75–86

    Article  CAS  PubMed  Google Scholar 

  26. Zheng G et al (2011) Adeno-associated viral vector-mediated expression of NT4-ADNF-9 fusion gene protects against aminoglycoside-induced auditory hair cell loss in vitro. Acta Otolaryngol 131(2):136–141

    Article  CAS  PubMed  Google Scholar 

  27. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112(4):467–480

    Article  CAS  PubMed  Google Scholar 

  28. Magen I, Gozes I (2013) Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP). Neuropeptides 47(6):489–495

    Article  CAS  PubMed  Google Scholar 

  29. Divinski I, Mittelman L, Gozes I (2004) A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 279(27):28531–28538

    Article  CAS  PubMed  Google Scholar 

  30. Jouroukhin Y et al (2013) NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 56:79–94

    Article  CAS  PubMed  Google Scholar 

  31. Idan-Feldman A, Ostritsky R, Gozes I (2012) Tau and caspase 3 as targets for neuroprotection. Int J Alzheimer’s Dis 2012:1–8

    Article  Google Scholar 

  32. Oz S et al (2014) The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. Mol Psychiatry 19(10):1115–1124

    Article  CAS  PubMed  Google Scholar 

  33. Harrod SB, Van Horn ML (2009) Sex differences in tolerance to the locomotor depressant effects of lobeline in periadolescent rats. Pharmacol Biochem Behav 94(2):296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mill J, Petronis A (2007) Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 12(9):799–814

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Science Foundation of China (No. 81171256 to Xian-Cang Ma, No. 81271487 to Cheng-ge Gao and No. 81270416 to Xiao-Ling Zhang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hui Dang or Cheng-Ge Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XC., Chu, Z., Zhang, XL. et al. Intranasal Delivery of Recombinant NT4-NAP/AAV Exerts Potential Antidepressant Effect. Neurochem Res 41, 1375–1380 (2016). https://doi.org/10.1007/s11064-016-1841-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1841-0

Keywords

Navigation