Skip to main content

Advertisement

Log in

Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The precise pathogenic mechanisms of the disease remain uncertain, and as of yet, there is no effective cure. Human adipose stem cells (hASC) can be easily obtained during operative procedures. hASC have a clinically feasible potential to treat neurodegenerative disorders, since cytosolic extract of hASC contain a number of essential neurotrophic factors. In this study, we investigated effects of hASC extract on the SOD1 G93A mouse model of ALS and in vitro test. Administration of hASC extract improved motor function and prolonged the time until symptom onset, rotarod failure, and death in ALS mice. In the hASC extracts group, choline acetyltransferase immunostaining in the ventral horn of the lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effect of hASC extract in ALS mice was also suggested by western blot analysis of spinal cord extract from ALS mice and in vitro test. hASC extract treatment significantly increased expression of p-Akt, p-CREB, and PGC-1α in SOD1 G93A mouse model and in vitro test. Our results indicated that hASC extract reduced apoptotic cell death and recovered mutant SOD1-induced mitochondrial dysfunction. Moreover, hASC extract reduced mitochondrial membrane potential. In conclusion, we have demonstrated, for the first time, that hASC extract exert a potential therapeutic action in the SOD1 G93A mouse model of ALS and in vitro test. These findings suggest that hASC hold promise as a novel therapeutic strategy for treating ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

hASC:

Human adipose stem cells

SOD1:

Superoxide dismutase-1

ChAT:

Choline acetyltransferase

HD:

Huntington’s disease

MMP:

Membrane potential

MSCs:

Mesenchymal stem cells

References

  1. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2(11):806–819

    Article  CAS  PubMed  Google Scholar 

  2. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    Article  CAS  PubMed  Google Scholar 

  3. Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59

    Article  CAS  PubMed  Google Scholar 

  4. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16(11):1033–1039

    Article  CAS  PubMed  Google Scholar 

  5. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23(7):862–871

    Article  CAS  PubMed  Google Scholar 

  6. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87(10):2183–2200

    Article  CAS  PubMed  Google Scholar 

  7. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50

    Article  PubMed  Google Scholar 

  8. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF et al (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17(6):1053–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizuno H (2010) Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Curr Opin Mol Ther 12(4):442–449

    CAS  PubMed  Google Scholar 

  11. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827

    Article  PubMed  Google Scholar 

  12. Marconi S, Bonaconsa M, Scambi I, Squintani GM, Rui W, Turano E et al (2013) Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 248:333–343

    Article  CAS  PubMed  Google Scholar 

  13. Kim KS, Lee HJ, An J, Kim YB, Ra JC, Lim I et al (2014) Transplantation of human adipose tissue-derived stem cells delays clinical onset and prolongs life span in ALS mouse model. Cell Transplant 23(12):1585–1597

    Article  PubMed  Google Scholar 

  14. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y et al (2005) Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 25(12):2542–2547

    Article  CAS  PubMed  Google Scholar 

  15. Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA (2011) Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29(6):913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li F, Whyte N, Niyibizi C (2012) Differentiating multipotent mesenchymal stromal cells generate factors that exert paracrine activities on exogenous MSCs: implications for paracrine activities in bone regeneration. Biochem Biophys Res Commun 426(4):475–479

    Article  CAS  PubMed  Google Scholar 

  17. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5):395–406

    Article  CAS  PubMed  Google Scholar 

  19. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  20. Lee ST, Chu K, Jung KH, Im WS, Park JE, Lim HC et al (2009) Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol 66(5):671–681

    Article  CAS  PubMed  Google Scholar 

  21. Heo SC, Jeon ES, Lee IH, Kim HS, Kim MB, Kim JH (2011) Tumor necrosis factor-alpha-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Invest Dermatol 31(7):1559–1567

    Article  Google Scholar 

  22. Im W, Ban J, Lim J, Lee M, Lee ST, Chu K et al (2013) Extracts of adipose derived stem cells slows progression in the R6/2 model of Huntington’s disease. PLoS One 8(4):e59438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu T, Im W, Lee ST, Ban JJ, Chai YJ, Lee M et al (2014) Modulation of mitochondrial function by stem cell-derived cellular components. Biochem Biophys Res Commun 448(4):403–408

    Article  CAS  PubMed  Google Scholar 

  24. Cozzolino M, Rossi S, Mirra A, Carri MT (2015) Mitochondrial dynamism and the pathogenesis of amyotrophic lateral sclerosis. Front Cell Neurosci 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  25. Palomo GM, Manfredi G (2015) Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 1607:36–46

    Article  CAS  PubMed  Google Scholar 

  26. Vehvilainen P, Koistinaho J, Gundars G (2014) Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front Cell Neurosci 8:126

    Article  PubMed  PubMed Central  Google Scholar 

  27. Joo IS, Hwang DH, Seok JI, Shin SK, Kim SU (2007) Oral administration of memantine prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Clin Neurol 3(4):181–186

    Article  PubMed  PubMed Central  Google Scholar 

  28. Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57(6):809–818

    Article  CAS  PubMed  Google Scholar 

  29. Hetz C, Thielen P, Fisher J, Pasinelli P, Brown RH, Korsmeyer S et al (2007) The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death Differ 14(7):1386–1389

    Article  CAS  PubMed  Google Scholar 

  30. Koh SH, Kim Y, Kim HY, Hwang S, Lee CH, Kim SH (2007) Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS. Exp Neurol 205(2):336–346

    Article  CAS  PubMed  Google Scholar 

  31. Ahn SW, Kim JE, Park KS, Choi WJ, Hong YH, Kim SM et al (2012) The neuroprotective effect of the GSK-3beta inhibitor and influence on the extrinsic apoptosis in the ALS transgenic mice. J Neurol Sci 320(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  32. Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp. doi:10.3791/2393

    PubMed  PubMed Central  Google Scholar 

  33. Kim SM, Kim H, Lee JS, Park KS, Jeon GS, Shon J et al (2013) Intermittent hypoxia can aggravate motor neuronal loss and cognitive dysfunction in ALS mice. PLoS One 8(11):e81808

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ahn SW, Jeon GS, Kim MJ, Shon JH, Kim JE, Shin JY et al (2014) Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis. J Neurol Sci 340(1–2):112–116

    Article  CAS  PubMed  Google Scholar 

  35. Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK et al (2012) Elevated PGC-1alpha activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 15(5):778–786

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang F, Chen R, Nakagawa A, Nishizawa M, Tsuda S, Wang H et al (2011) Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1alpha in Skeletal Muscle. Evid Based Complement Alternat Med 735297

  37. Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P et al (2011) Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1alpha) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 6(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  39. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7(9):710–723

    Article  CAS  PubMed  Google Scholar 

  40. Shi P, Gal J, Kwinter DM, Liu X, Zhu H (2010) Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802(1):45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616–630

    Article  CAS  PubMed  Google Scholar 

  42. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H et al (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156(1):65–72

    Article  CAS  PubMed  Google Scholar 

  43. Fuchs A, Kutterer S, Muhling T, Duda J, Schutz B, Liss B et al (2013) Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 591(Pt 10):2723–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jung C, Higgins CM, Xu Z (2002) Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 83(3):535–545

    Article  CAS  PubMed  Google Scholar 

  45. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18(9):3241–3250

    CAS  PubMed  Google Scholar 

  46. Guegan C, Przedborski S (2003) Programmed cell death in amyotrophic lateral sclerosis. J Clin Investig 111(2):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D et al (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43(1):19–30

    Article  CAS  PubMed  Google Scholar 

  48. Hwang DH, Lee HJ, Park IH, Seok JI, Kim BG, Joo IS et al (2009) Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16(10):1234–1244

    Article  CAS  PubMed  Google Scholar 

  49. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301(5634):839–842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the Korea Healthcare Technology R&D project, Ministry of health and Welfare, Republic of Korea (HI14C3347).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manho Kim or Jung-Joon Sung.

Additional information

Gye Sun Jeon and Wooseok Im have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Comparison of growth factors between hASC and hASC extract. BDNF, VEGF, PDGF-1, IGF-1, HGF-α, FGF-2 were investigated in hASC or hASC extract by western blot. The results showed that both groups contained various growth factors similarly (BDNF, Brain-derived neurotrophic factor; VEGF, Vascular endothelial growth factor; PDGF-1, Platelet-derived growth factor-1; IGF-1, Insulin-like growth factors-1; HGF-α, Hepatocyte growth factor-α; FGF-2, Fibroblast growth factor-2) (JPEG 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, G.S., Im, W., Shim, YM. et al. Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis. Neurochem Res 41, 913–923 (2016). https://doi.org/10.1007/s11064-015-1774-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1774-z

Keywords

Navigation