Skip to main content

Neuroprotective Effect of Natural Products on Peripheral Nerve Degeneration: A Systematic Review

Abstract

Peripheral nerve injury (PNI) is a serious public health problem that is linked with motor, sensory and autonomic deficits. Given the fact that this type of disorder leads to a decreased quality of life in most patients and adherence of available drugs is limited and have adverse effects, we investigated the efficacy of natural products in a PNI model. The search terms plants, medicinal, nerve regeneration, nerve crush, sciatic nerve as well as MeSH terms or free-text words were used to retrieve English language articles in PubMed, Scopus, Web of Science and LILACS published until July 2015. After sciatic nerve crush, natural products have improved significantly motor performance, sensory function and electrical conductance measured over weeks. Among the pharmacological targets suggested by the action of natural products, there were citations on the activation of the antiapoptotic signaling pathway, modulation in the expression of pro-inflammatory cytokines and neurotrophic factors. The systematic review provides scientific evidence that natural products are pharmacologically effective in the treatment of PNI such as sciatic nerve crush.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Noble J, Munro CA, Prasad VS, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma Injury Infect Crit Care 45:116–122

    CAS  Article  Google Scholar 

  2. Zhang YG, Sheng QS, Wang HK, Lv L, Zhang J, Chen JM, Xu H (2014) Triptolide improves nerve regeneration and functional recovery following crush injury to rat sciatic nerve. Neurosci Lett 561:198–202

    CAS  PubMed  Article  Google Scholar 

  3. Noorafshan A, Omidi A, Karbalay-Doust S (2011) Curcumin protects the dorsal root ganglion and sciatic nerve after crush in rat. Pathol Res Pract 207:577–582

    CAS  PubMed  Article  Google Scholar 

  4. De Sa JM, Mazzer N, Barbieri CH, Barreira AA (2004) The end-to-side peripheral nerve repair. Functional and morphometric study using the peroneal nerve of rats. J Neurosci Methods 136:45–53

    PubMed  Article  Google Scholar 

  5. Mazzer PYCN, Barbieri CH, Mazzer N, Fazan VPS (2006) Avaliação qualitativa e quantitativa das lesões agudas por esmagamento do nervo isquiático do rato. Acta Ortop Bras 14:220–225

    Article  Google Scholar 

  6. Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9:313–325

    CAS  PubMed  Article  Google Scholar 

  7. Rodríguez FJ, Valero-Cabré A, Navarro X (2004) Regeneration and functional recovery following peripheral nerve injury. Drug Discov Today Dis Mech 1:177–185

    Article  Google Scholar 

  8. Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16:E1

    PubMed  Article  Google Scholar 

  9. Sun W, Sun C, Zhao H, Lin H, Han Q, Wang J, Ma H, Chen B, Xiao Z, Dai J (2009) Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta. PLoS ONE 4:e6180

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Noorafshan A, Omidi A, Karbalay-Doust S, Aliabadi E, Dehghani F (2011) Effects of curcumin on the dorsal root ganglion structure and functional recovery after sciatic nerve crush in rat. Micron 42:449–455

    CAS  PubMed  Article  Google Scholar 

  11. Marqueste T, Alliez JR, Alluin O, Jammes Y, Decherchi P (2004) Neuromuscular rehabilitation by treadmill running or electrical stimulation after peripheral nerve injury and repair. J Appl Physiol 96:1988–1995

    PubMed  Article  Google Scholar 

  12. Roglio I, Giatti S, Pesaresi M, Bianchi R, Cavaletti G, Lauria G, Garcia-Segura LM, Melcangi RC (2008) Neuroactive steroids and peripheral neuropathy. Brain Res Rev 57:460–469

    CAS  PubMed  Article  Google Scholar 

  13. Sabatier MJ, Redmon N, Schwartz G, English AW (2008) Treadmill training promotes axon regeneration in injured peripheral nerves. Exp Neurol 211:489–493

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Ma J, Liu J, Yu H, Wang Q, Chen Y, Xiang L (2013) Curcumin promotes nerve regeneration and functional recovery in rat model of nerve crush injury. Neurosci Lett 547:26–31

    CAS  PubMed  Article  Google Scholar 

  15. Quintans JS, Antoniolli AR, Almeida JR, Santana-Filho VJ, Quintans-Junior LJ (2014) Natural products evaluated in neuropathic pain models—a systematic review. Basic Clin Pharmacol Toxicol 114:442–450

    CAS  PubMed  Article  Google Scholar 

  16. Ren ZL, Zuo PP (2012) Neural regeneration: role of traditional Chinese medicine in neurological diseases treatment. J Pharmacol Sci 120:139–145

    CAS  PubMed  Article  Google Scholar 

  17. Guimaraes AG, Serafini MR, Quintans-Junior LJ (2014) Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin Ther Pat 24:243–265

    CAS  PubMed  Article  Google Scholar 

  18. Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807

    CAS  PubMed  Article  Google Scholar 

  19. Farrell KE, Keely S, Graham BA, Callister R, Callister RJ (2014) A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 20:176–195

    PubMed  Article  Google Scholar 

  20. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43

    PubMed  PubMed Central  Article  Google Scholar 

  21. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Suk K (2005) Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals 14:23–33

    CAS  PubMed  Article  Google Scholar 

  23. Sena ES, Currie GL, McCann SK, Macleod MR, Howells DW (2014) Systematic reviews and meta-analysis of preclinical studies: why perform them and how to appraise them critically. J Cereb Blood Flow Metab 34:737–742

    PubMed  PubMed Central  Article  Google Scholar 

  24. Steinmetz KL, Spack EG (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 9(Suppl 1):S2

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Frykman GK, McMillan PJ, Yegge S (1988) A review of experimental methods measuring peripheral nerve regeneration in animals. Orthop Clin N Am 19:209–219

    CAS  Google Scholar 

  26. Festing MF, Altman DG (2002) Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 43:244–258

    CAS  PubMed  Article  Google Scholar 

  27. Bebarta V, Luyten D, Heard K (2003) Emergency medicine animal research: Does use of randomization and blinding affect the results? Acad Emerg Med 10:684–687

    PubMed  Article  Google Scholar 

  28. Sena E, van der Worp HB, Howells D, Macleod M (2007) How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci 30:433–439

    CAS  PubMed  Article  Google Scholar 

  29. Tsilidis KK, Panagiotou OA, Sena ES, Aretouli E, Evangelou E, Howells DW, Al-Shahi Salman R, Macleod MR, Ioannidis JP (2013) Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol 11:e1001609

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 98:16–37

    CAS  PubMed  Article  Google Scholar 

  31. Beer GM, Steurer J, Meyer VE (2001) Standardizing nerve crushes with a non-serrated clamp. J Reconstr Microsurg 17:531–534

    CAS  PubMed  Article  Google Scholar 

  32. Renno WM, Al-Maghrebi M, Alshammari A, George P (2013) (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int 62:221–231

    CAS  PubMed  Article  Google Scholar 

  33. Siironen J, Vuorio E, Sandberg M, Roytta M (1996) Expression of type I and III collagen and laminin beta1 after rat sciatic nerve crush injury. J Peripher Nerv Syst 1:209–221

    CAS  PubMed  Google Scholar 

  34. Varejao AS, Cabrita AM, Meek MF, Bulas-Cruz J, Melo-Pinto P, Raimondo S, Geuna S, Giacobini-Robecchi MG (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21:1652–1670

    PubMed  Article  Google Scholar 

  35. Varejao AS, Melo-Pinto P, Meek MF, Filipe VM, Bulas-Cruz J (2004) Methods for the experimental functional assessment of rat sciatic nerve regeneration. Neurol Res 26:186–194

    PubMed  Article  Google Scholar 

  36. Yuan Y, Shen H, Yao J, Hu N, Ding F, Gu X (2010) The protective effects of Achyranthes bidentata polypeptides in an experimental model of mouse sciatic nerve crush injury. Brain Res Bull 81:25–32

    CAS  PubMed  Article  Google Scholar 

  37. Anders JJ, Borke RC, Woolery SK, Van de Merwe WP (1993) Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82

    CAS  PubMed  Article  Google Scholar 

  38. Le Prell CG, Hughes LF, Miller JM (2007) Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 42:1454–1463

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Melcangi RC, Cavarretta IT, Ballabio M, Leonelli E, Schenone A, Azcoitia I, Miguel Garcia-Segura L, Magnaghi V (2005) Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Brain Res Rev 48:328–338

    CAS  PubMed  Article  Google Scholar 

  40. Takimoto I, Fujibayashi K (1988) Effect of flunarizine on experimentally induced facial nerve injury. Acta Otolaryngol 104(Suppl 446):152–156

    Google Scholar 

  41. Yuce S, Gokce CE, Iskdemir A, Koc ER, Cemil DB, Gokce A, Sargon MF (2013) An experimental comparison of the effects of propolis, curcumin, and methylprednisolone on crush injuries of the sciatic nerve. Ann Plast Surg 74:684–692

    Article  CAS  Google Scholar 

  42. Lee JM, Namgung U, Hong KE (2009) Growth-promoting activity of Sanyak (Dioscoreae rhizoma) extract on injured sciatic nerve in rats. J Acupunct Meridian Stud 2:228–235

    PubMed  Article  Google Scholar 

  43. Chen YS, Wu CH, Yao CH, Chen CT (2002) Ginsenoside Rb1 enhances peripheral nerve regeneration across wide gaps in silicone rubber chambers. Int J Artif Organs 25:1103–1108

    CAS  PubMed  Google Scholar 

  44. Seo TB, Han IS, Yoon JH, Seol IC, Kim YS, Jo HK, An JJ, Hong KE, Seo YB, Kim DH, Park SK, Yang DC, Namgung U (2006) Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve. Acta Pharmacol Sin 27:50–58

    CAS  PubMed  Article  Google Scholar 

  45. Wong KH, Kanagasabapathy G, Naidu M, David P, Sabaratnam V (2014) Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration. Chin J Integr Med. doi:10.1007/s11655-014-1624-2

    PubMed  Google Scholar 

  46. Moghadam FH, Dehghan M, Zarepur E, Dehlavi R, Ghaseminia F, Ehsani S, Mohammadzadeh G, Barzegar K (2014) Oleo gum resin of Ferula assa-foetida L. ameliorates peripheral neuropathy in mice. J Ethnopharmacol 154:183–189

    Article  CAS  Google Scholar 

  47. Han AM, Heo H, Kwon YK (2012) Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J Med Food 15:413–417

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Cheung ZH, So KF, Lu Q, Yip HK, Wu W, Shan JJ, Pang PK, Chen CF (2002) Enhanced survival and regeneration of axotomized retinal ganglion cells by a mixture of herbal extracts. J Neurotrauma 19:369–378

    PubMed  Article  Google Scholar 

  49. Pan HC, Cheng FC, Chen CJ, Lai SZ, Liu MJ, Chang MH, Wang YC, Yang DY, Ho SP (2009) Dietary supplement with fermented soybeans, natto, improved the neurobehavioral deficits after sciatic nerve injury in rats. Neurol Res 31:441–452

    CAS  PubMed  Article  Google Scholar 

  50. Pan HC, Yang DY, Ho SP, Sheu ML, Chen CJ, Hwang SM, Chang MH, Cheng FC (2009) Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. J Biomed Sci 16:75

    PubMed  PubMed Central  Article  Google Scholar 

  51. Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22:3052–3060

    CAS  PubMed  Google Scholar 

  52. Taskinen HS, Olsson T, Bucht A, Khademi M, Svelander L, Roytta M (2000) Peripheral nerve injury induces endoneurial expression of IFN-gamma, IL-10 and TNF-alpha mRNA. J Neuroimmunol 102:17–25

    CAS  PubMed  Article  Google Scholar 

  53. Syroid DE, Maycox PJ, Soilu-Hanninen M, Petratos S, Bucci T, Burrola P, Murray S, Cheema S, Lee KF, Lemke G, Kilpatrick TJ (2000) Induction of postnatal schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci 20:5741–5747

    CAS  PubMed  Google Scholar 

  54. Kou Y, Wang Z, Wu Z, Zhang P, Zhang Y, Yin X, Wong X, Qiu G, Jiang B (2013) Epimedium extract promotes peripheral nerve regeneration in rats. Evid Based Complement Alternat Med 2013:954798

    PubMed  PubMed Central  Article  Google Scholar 

  55. Cheng Q, Jiang C, Wang C, Yu S, Zhang Q, Gu X, Ding F (2014) The Achyranthes bidentata polypeptide k fraction enhances neuronal growth in vitro and promotes peripheral nerve regeneration after crush injury in vivo. Neural Regen Res 9:2142–2150

    PubMed  PubMed Central  Article  Google Scholar 

  56. Wang Y, Shen W, Yang L, Zhao H, Gu W, Yuan Y (2013) The protective effects of Achyranthes bidentata polypeptides on rat sciatic nerve crush injury causes modulation of neurotrophic factors. Neurochem Res 38:538–546

    PubMed  Article  CAS  Google Scholar 

  57. Gispen WH, Boonstra J, De Graan PN, Jennekens FG, Oestreicher AB, Schotman P, Schrama LH, Verhaagen J, Margolis FL (1990) B-50/GAP-43 in neuronal development and repair. Restor Neurol Neurosci 1:237–244

    CAS  PubMed  Google Scholar 

  58. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    CAS  PubMed  Article  Google Scholar 

  59. Irwin N, Chao S, Goritchenko L, Horiuchi A, Greengard P, Nairn AC, Benowitz LI (2002) Nerve growth factor controls GAP-43 mRNA stability via the phosphoprotein ARPP-19. Proc Natl Acad Sci USA 99:12427–12431

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Huang YM, Zhao YQ, Tian W (2007) Experimental study on effect of Suifukang in promoting repairing and regeneration of nerve fibers in spinal cord. Chin J Integr Tradit Western Med 27:724–727

    Google Scholar 

  61. Gan L, Qian M, Shi K, Chen G, Gu Y, Du W, Zhu G (2014) Restorative effect and mechanism of mecobalamin on sciatic nerve crush injury in mice. Neural Regen Res 9:1979–1984

    PubMed  PubMed Central  Google Scholar 

  62. McAllister AK (2001) Neurotrophins and neuronal differentiation in the central nervous system. Cell Mol Life Sci 58:1054–1060

    CAS  PubMed  Article  Google Scholar 

  63. Shu B, Li XF, Xu LQ, Wang YJ, Shi Q, Zhou CJ (2010) Effects of Yiqi Huayu Decoction on brain-derived neurotrophic factor expression in rats with lumbar nerve root injury. J Chin Integr Med 8:280–286

    Article  Google Scholar 

  64. Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VM, Persson H (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465

    CAS  PubMed  Article  Google Scholar 

  65. Liuzzi FJ, Tedeschi B (1991) Peripheral nerve regeneration. Neurosurg Clin N Am 2:31–42

    CAS  PubMed  Google Scholar 

  66. Taniuchi M, Clark HB, Johnson EM Jr (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci USA 83:4094–4098

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Caruana M, Vassallo N (2015) Tea Polyphenols in Parkinson’s Disease. Adv Exp Med Biol 863:117–137

    PubMed  Article  Google Scholar 

  68. Chang X, Rong C, Chen Y, Yang C, Hu Q, Mo Y, Zhang C, Gu X, Zhang L, He W, Cheng S, Hou X, Su R, Liu S, Dun W, Wang Q, Fang S (2015) (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp Cell Res 334:136–145

    CAS  PubMed  Article  Google Scholar 

  69. Jimenez-Del-Rio M, Velez-Pardo C (2015) Alzheimer’s disease, drosophila melanogaster and polyphenols. Adv Exp Med Biol 863:21–53

    PubMed  Article  Google Scholar 

  70. Khalatbary AR (2014) Natural polyphenols and spinal cord injury. Iran Biomed J 18:120–129

    PubMed  PubMed Central  Google Scholar 

  71. Waterman E, Lockwood B (2007) Active components and clinical applications of olive oil. Altern Med Rev 12:331–342

    PubMed  Google Scholar 

  72. Sutherland BA, Rahman RM, Appleton I (2006) Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem 17:291–306

    CAS  PubMed  Article  Google Scholar 

  73. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin–from molecule to biological function. Angew Chem Int Ed Engl 51:5308–5332

    CAS  PubMed  Article  Google Scholar 

  74. Lopez-Miranda V, Soto-Montenegro ML, Vera G, Herradon E, Desco M, Abalo R (2012) Resveratrol: a neuroprotective polyphenol in the Mediterranean diet. Rev Neurol 54:349–356

    PubMed  Google Scholar 

  75. Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, Gonzalo L, Capani F, Morales L, Barreto GE (2012) Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 15:1–9

    CAS  PubMed  Article  Google Scholar 

  76. Peng PH, Chiou LF, Chao HM, Lin S, Chen CF, Liu JH, Ko ML (2010) Effects of epigallocatechin-3-gallate on rat retinal ganglion cells after optic nerve axotomy. Exp Eye Res 90:528–534

    CAS  PubMed  Article  Google Scholar 

  77. Xie J, Jiang L, Zhang T, Jin Y, Yang D, Chen F (2010) Neuroprotective effects of Epigallocatechin-3-gallate (EGCG) in optic nerve crush model in rats. Neurosci Lett 479:26–30

    CAS  PubMed  Article  Google Scholar 

  78. Renno WM, Al-Maghrebi M, Al-Banaw A (2012) (−)-Epigallocatechin-3-gallate (EGCG) attenuates functional deficits and morphological alterations by diminishing apoptotic gene overexpression in skeletal muscles after sciatic nerve crush injury. Naunyn Schmiedebergs Arch Pharmacol 385:807–822

    CAS  PubMed  Article  Google Scholar 

  79. Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL (2012) Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 62:843–854

    CAS  PubMed  Article  Google Scholar 

  80. Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, Kutlay M, Ipcioglu O, Kucukodaci Z (2010) Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien) 152:1583–1590

    Article  Google Scholar 

  81. Lin MS, Lee YH, Chiu WT, Hung KS (2011) Curcumin provides neuroprotection after spinal cord injury. J Surg Res 166:280–289

    CAS  PubMed  Article  Google Scholar 

  82. Khalatbary AR, Ahmadvand H (2011) Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. Iran Biomed J 15:31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Khalatbary AR, Tiraihi T, Boroujeni MB, Ahmadvand H, Tavafi M, Tamjidipoor A (2010) Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Res 1306:168–175

    CAS  PubMed  Article  Google Scholar 

  84. Paterniti I, Genovese T, Crisafulli C, Mazzon E, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S (2009) Treatment with green tea extract attenuates secondary inflammatory response in an experimental model of spinal cord trauma. Naunyn Schmiedebergs Arch Pharmacol 380:179–192

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Karimi E, Oskoueian E, Hendra R, Jaafar HZ (2010) Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15:6244–6256

    CAS  PubMed  Article  Google Scholar 

  86. Lanza C, Raimondo S, Vergani L, Catena N, Senes F, Tos P, Geuna S (2012) Expression of antioxidant molecules after peripheral nerve injury and regeneration. J Neurosci Res 90:842–848

    CAS  PubMed  Article  Google Scholar 

  87. Vanotti A, Osio M, Mailland E, Nascimbene C, Capiluppi E, Mariani C (2007) Overview on pathophysiology and newer approaches to treatment of peripheral neuropathies. CNS Drugs 21(Suppl 1):3–12 (discussion 45–16)

    CAS  PubMed  Article  Google Scholar 

  88. Tamaddonfard E, Farshid AA, Ahmadian E, Hamidhoseyni A (2013) Crocin enhanced functional recovery after sciatic nerve crush injury in rats. Iran J Basic Med Sci 16:83–90

    PubMed  PubMed Central  Google Scholar 

  89. Zheng YQ, Liu JX, Wang JN, Xu L (2007) Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 1138:86–94

    CAS  PubMed  Article  Google Scholar 

  90. Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU, Jung WS, Cho KH, Park JH, Kang I, Hong JW, Lee EH (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648:110–116

    CAS  PubMed  Article  Google Scholar 

  91. Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C (2011) Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 187:4788–4799

    CAS  PubMed  Article  Google Scholar 

  92. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    CAS  PubMed  Article  Google Scholar 

  93. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    CAS  PubMed  Article  Google Scholar 

  94. Schwartzman RJ, Grothusen J, Kiefer TR, Rohr P (2001) Neuropathic central pain: epidemiology, etiology, and treatment options. Arch Neurol 58:1547–1550

    CAS  PubMed  Article  Google Scholar 

  95. Palomba R, Bonaccia P, Graffi M, Costa F (2012) The novel therapeuthic targets in the treatment of chronic pain. Transl Med UniSa 3:57–61

    PubMed  PubMed Central  Google Scholar 

  96. Parvizpur A, Ahmadiani A, Kamalinejad M (2004) Spinal serotonergic system is partially involved in antinociception induced by Trigonella foenum-graecum (TFG) leaf extract. J Ethnopharmacol 95:13–17

    PubMed  Article  Google Scholar 

  97. Naik AK, Latham JR, Obradovic A, Jevtovic-Todorovic V (2012) Dorsal root ganglion application of muscimol prevents hyperalgesia and stimulates myelin protein expression after sciatic nerve injury in rats. Anesth Analg 114:674–682

    CAS  PubMed  Article  Google Scholar 

  98. Toulme E, Tsuda M, Khakh BS, Inoue K (2010) Frontiers in neuroscience on the role of ATP-gated P2X receptors in acute, inflammatory and neuropathic pain. In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. CRC Press Llc., Boca Raton

    Google Scholar 

  99. Tamaddonfard E, Farshid AA, Maroufi S, Kazemi-Shojaei S, Erfanparast A, Asri-Rezaei S, Taati M, Dabbaghi M, Escort M (2014) Effects of safranal, a constituent of saffron, and vitamin E on nerve functions and histopathology following crush injury of sciatic nerve in rats. Phytomedicine 21:717–723

    CAS  PubMed  Article  Google Scholar 

  100. Thiagarajan VR, Shanmugam P, Krishnan UM, Muthuraman A, Singh N (2012) Ameliorative potential of Butea monosperma on chronic constriction injury of sciatic nerve induced neuropathic pain in rats. Anais da Academia Brasileira de Ciências 84:1091–1104

    PubMed  Article  Google Scholar 

  101. Wei SY, Zhang PX, Han N, Dang Y, Zhang HB, Zhang DY, Fu ZG, Jiang BG (2009) Effects of Hedysari polysaccharides on regeneration and function recovery following peripheral nerve injury in rats. Am J Chin Med 37:57–67

    CAS  PubMed  Article  Google Scholar 

  102. Tehranipour M, Javaheri R (2009) Neuroprotetive effect of Curcuma longa alcoholic extract on peripheral nerves degeneration after sciatic nerve compression in rats. J Biol Sci 9:889–893

    Article  Google Scholar 

  103. Tehranipour M, Ghadamyari T (2009) Neuroprotective effect of Salvia staminea alcoholic extract on peripheral nerve degeneration after sciatic nerve compression in rats. Pharmacologyonline 3:679–687

    Google Scholar 

  104. Tehranipour M, Ghadamyari T (2010) The effects of root aquatic extract of Salvia staminea on neuronal density of alpha motoneurons in spinal cord anterior horn after sciatic nerve compression in rats. J Biol Sci 10:48–52

    Article  Google Scholar 

  105. Ma J, Li W, Tian R, Lei W (2010) Ginsenoside Rg1 promotes peripheral nerve regeneration in rat model of nerve crush injury. Neurosci Lett 478:66–71

    CAS  PubMed  Article  Google Scholar 

  106. Mollashahi M, Tehranipour M (2011) The effect of Prosopis fracta pod alcoholic extract on neuroglia density after sciatic nerve injury in rats. Pharmacologyonline 1:501–508

    Google Scholar 

  107. Tehranipour M, Mollashahi M (2011) Antiinflammation effect of Prosopis fracta pod aquatic extract on neuroglia density after sciaticnerve injury in rats. Pharmacologyonline 1:1168–1175

    Google Scholar 

  108. Morani AS, Bodhankar SL, Mohan V, Thakurdesai PA (2012) Ameliorative effects of standardized extract from Trigonella foenum-graecum L. seeds on painful peripheral neuropathy in rats. Asian Pac J Trop Med 5:385–390

    Article  Google Scholar 

  109. Sheng QS, Wang ZJ, Zhang J, Zhang YG (2013) Salidroside promotes peripheral nerve regeneration following crush injury to the sciatic nerve in rats. Neuroreport 24:217–223

    PubMed  Article  Google Scholar 

  110. Javanbakht J, Hobbenaghi R, Hosseini E, Bahrami AM, Khadivar F, Fathi S, Hassan MA (2013) Histopathological investigation of neuroprotective effects of Nigella sativa on motor neurons anterior horn spinal cord after sciatic nerve crush in rats. Pathol Biol 61:250–253

    CAS  PubMed  Article  Google Scholar 

  111. Wang L, Yuan D, Zhang D, Zhang W, Liu C, Cheng H, Song Y, Tan Q (2015) Ginsenoside re promotes nerve regeneration by facilitating the proliferation, differentiation and migration of schwann cells via the ERK- and JNK-dependent pathway in rat model of sciatic nerve crush injury. Cell Mol Neurobiol 35:827–840

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the FAPITEC-SE/Brazil, CAPES/Brazil and CNPq/Brazil. Heitor G. Araújo Filho has a scholarship from Programa de Pós-Graduação em Ciências da Saúde (Federal University of Sergipe/Brazil) supervised by Dr. Jullyana S.S. Quintans. We also thank Abilio Borghi for the English review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jullyana S. S. Quintans.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Araújo-Filho, H.G., Quintans-Júnior, L.J., Barreto, A.S. et al. Neuroprotective Effect of Natural Products on Peripheral Nerve Degeneration: A Systematic Review. Neurochem Res 41, 647–658 (2016). https://doi.org/10.1007/s11064-015-1771-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1771-2

Keywords

  • Medicinal plant
  • Natural products
  • Nerve regeneration
  • Sciatic nerve crush
  • Peripheral nerve injury