Skip to main content
Log in

Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13–17 % of MRCCE activities and show a moderate to strong effect (r = 0.37–0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milane L, Trivedi M, Singh A, Talekar M, Amiji M (2015) Mitochondrial biology, targets, and drug delivery. J Controll Release 207:40–58

    Article  CAS  Google Scholar 

  2. Babcock GT, Wikstrom M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356(6367):301–309

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AK (2014) Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 5:341

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shestov AA, Barker B, Gu Z, Locasale JW (2013) Computational approaches for understanding energy metabolism. Wiley Interdiscip Rev Syst Biol Med 5(6):733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engel J Jr (1996) Surgery for seizures. N Engl J Med 334(10):647–652

    Article  PubMed  Google Scholar 

  6. Usui N, Baba K, Matsuda K et al (2013) Mesial temporal lobe epilepsy with no specific histological abnormality: a distinct surgically remediable syndrome. Epilepsy Behav 29(3):542–547

    Article  PubMed  Google Scholar 

  7. Abosch A, Bernasconi N, Boling W et al (2002) Factors predictive of suboptimal seizure control following selective amygdalohippocampectomy. J Neurosurg 97(5):1142–1151

    Article  PubMed  Google Scholar 

  8. Sagher O, Thawani JP, Etame AB, Gomez-Hassan DM (2012) Seizure outcomes and mesial resection volumes following selective amygdalohippocampectomy and temporal lobectomy. Neurosurg Focus 32(3):E8

    Article  PubMed  Google Scholar 

  9. Bujarski KA, Hirashima F, Roberts DW et al (2013) Long-term seizure, cognitive, and psychiatric outcome following trans-middle temporal gyrus amygdalohippocampectomy and standard temporal lobectomy. J Neurosurg 119(1):16–23

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alexandre V Jr, Walz R, Bianchin MM et al (2006) Seizure outcome after surgery for epilepsy due to focal cortical dysplastic lesions. Seizure 15(6):420–427

    Article  PubMed  Google Scholar 

  11. Guarnieri R, Walz R, Hallak JE et al (2009) Do psychiatric comorbidities predict postoperative seizure outcome in temporal lobe epilepsy surgery? Epilepsy Behav 14(3):529–534

    Article  PubMed  Google Scholar 

  12. Araujo D, Santos AC, Velasco TR et al (2006) Volumetric evidence of bilateral damage in unilateral mesial temporal lobe epilepsy. Epilepsia 47(8):1354–1359

    Article  PubMed  Google Scholar 

  13. Nunes JC, Zakon DB, Claudino LS et al (2011) Hippocampal sclerosis and ipsilateral headache among mesial temporal lobe epilepsy patients. Seizure 20(6):480–484

    Article  PubMed  Google Scholar 

  14. Pauli C, Thais ME, Claudino LS et al (2012) Predictors of quality of life in patients with refractory mesial temporal lobe epilepsy. Epilepsy Behav 25(2):208–213

    Article  PubMed  Google Scholar 

  15. Guarnieri R, Wichert-Ana L, Hallak JE et al (2005) Interictal SPECT in patients with mesial temporal lobe epilepsy and psychosis: a case-control study. Psychiatry Res 138(1):75–84

    Article  PubMed  Google Scholar 

  16. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316

    Article  CAS  PubMed  Google Scholar 

  17. Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153(1):23–36

    Article  CAS  PubMed  Google Scholar 

  18. Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51

    Article  CAS  PubMed  Google Scholar 

  19. Latini A, da Silva CG, Ferreira GC et al (2005) Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86(1–2):188–199

    Article  CAS  PubMed  Google Scholar 

  20. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316(7139):1236–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic Press, London

    Google Scholar 

  22. Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156(2):435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278(38):36027–36031

    Article  CAS  PubMed  Google Scholar 

  24. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17(1):3–8

    Article  CAS  PubMed  Google Scholar 

  25. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Viollet B, Athea Y, Mounier R et al (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44

    Article  CAS  Google Scholar 

  27. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Navarro A, Boveris A, Bandez MJ et al (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46(12):1574–1580

    Article  CAS  PubMed  Google Scholar 

  29. Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9(3):181–194

    Article  CAS  PubMed  Google Scholar 

  30. Bains R, Moe MC, Larsen GA, Berg-Johnsen J, Vinje ML (2006) Volatile anaesthetics depolarize neural mitochondria by inhibiton of the electron transport chain. Acta Anaesthesiol Scand 50(5):572–579

    Article  CAS  PubMed  Google Scholar 

  31. Velasco TR, Sakamoto AC, Alexandre V Jr et al (2006) Foramen ovale electrodes can identify a focal seizure onset when surface EEG fails in mesial temporal lobe epilepsy. Epilepsia 47(8):1300–1307

    Article  PubMed  Google Scholar 

  32. Thom M, Mathern GW, Cross JH, Bertram EH (2010) Mesial temporal lobe epilepsy: How do we improve surgical outcome? Ann Neurol 68(4):424–434

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guarnieri R, Hallak JE, Walz R et al (2004) Pharmacological treatment of psychosis in epilepsy. Revista Brasileira de Psiquiatria 26(1):57–61

    Article  PubMed  Google Scholar 

  34. Mula M, Monaco F (2009) Antiepileptic drugs and psychopathology of epilepsy: an update. Epileptic Disord 11(1):1–9

    PubMed  Google Scholar 

  35. Bragatti JA, Torres CM, Cherubini PA, Leistner-Segal S, Bianchin MM (2014) Is interictal EEG activity a biomarker for mood disorders in temporal lobe epilepsy? Clin Neurophysiol 125(10):1952–1958

    Article  PubMed  Google Scholar 

  36. Wingenfeld K, Wolf OT (2014) Stress, memory, and the hippocampus. Front Neurol Neurosci 34:109–120

    Article  PubMed  Google Scholar 

  37. Jerusalinsky D, Quillfeldt JA, Walz R et al (1994) Effect of the infusion of the GABA-A receptor agonist, muscimol, on the role of the entorhinal cortex, amygdala, and hippocampus in memory processes. Behav Neural Biol 61(2):132–138

    Article  CAS  PubMed  Google Scholar 

  38. Markowitsch HJ, Staniloiu A (2012) Amnesic disorders. Lancet 380(9851):1429–1440

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESC/CNPq, Programa de Apoio a Núcleos de Excelência PRONEX (NENASC Project), Santa Catarina, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Walz.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the study.

Additional information

Marcelo Fernando Ronsoni and Aline Pertile Remor have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronsoni, M.F., Remor, A.P., Lopes, M.W. et al. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage. Neurochem Res 41, 880–891 (2016). https://doi.org/10.1007/s11064-015-1769-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1769-9

Keywords

Navigation