Skip to main content

Advertisement

Log in

Regulating Factors in Acid-Sensing Ion Channel 1a Function

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 15 February 2016

Abstract

In recent years, research of acid sensing ion channels (ASICs) has increased tremendously, especially studies focusing on ASIC1a, which plays a critical role in many important physiologic and pathological functions. This review will discuss factors regulating ASIC1a expression and activity in various conditions and will provide a theoretical basis for clinical development and application of ASIC1a modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271:7879–7882

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP (1997) BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA 94:1459–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272:29778–29783

    Article  CAS  PubMed  Google Scholar 

  4. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  5. Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA 95:10240–10245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Babinski K, Le KT, Seguela P (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 72:51–57

    Article  CAS  PubMed  Google Scholar 

  7. Grunder S, Geissler HS, Bassler EL, Ruppersberg JP (2000) A new member of acid-sensing ion channels from pituitary gland. NeuroReport 11:1607–1611

    Article  CAS  PubMed  Google Scholar 

  8. Diochot S, Salinas M, Baron A, Escoubas P, Lazdunski M (2004) Analysis of the membrane topology of the acid-sensing ion channel 2a. J Biol Chem 279:55514–55519

    Article  CAS  Google Scholar 

  9. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    Article  CAS  PubMed  Google Scholar 

  10. Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ, Zimmer A (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci USA 99:8992–8997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci USA 101:3621–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coryell MW, Ziemann AE, Westmoreland PJ, Haenfler JM, Kurjakovic Z, Zha XM, Price M, Schnizler MK, Wemmie JA (2007) Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biol Psychiatry 62:1140–1148

    Article  CAS  PubMed  Google Scholar 

  13. Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, Cook MN, Dunning JP, Price MP, Rainier JD, Liu Z, Light AR, Langbehn DR, Wemmie JA (2009) Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 29:5381–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sanchez EE, Burlingame AL, Basbaum AI, Julius D (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deval E, Noel J, Gasull X, Delaunay A, Alloui A, Friend V, Eschalier A, Lazdunski M, Lingueglia E (2011) Acid-sensing ion channels in postoperative pain. J Neurosci 31:6059–6066

    Article  CAS  PubMed  Google Scholar 

  16. Xiong ZG, Chu XP, Simon RP (2006) Ca2+ -permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol 209:59–68

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, Simon RP, Xiong ZG (2010) Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab 30:1247–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L (2011) Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 134:571–584

    Article  PubMed  Google Scholar 

  19. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang Y, Jiang N, Li J, Ji YH, Xiong ZG, Zha XM (2015) Two aspects of ASIC function: synaptic plasticity and neuronal injury. Neuropharmacology 94:42–48

    Article  CAS  PubMed  Google Scholar 

  21. Jernigan NL, Paffett ML, Walker BR, Resta TC (2009) ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca(2+) entry. Am J Physiol Lung Cell Mol Physiol 297:L271–L285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jernigan NL, Herbert LM, Walker BR, Resta TC (2012) Chronic hypoxia upregulates pulmonary arterial ASIC1: a novel mechanism of enhanced store-operated Ca2+ entry and receptor-dependent vasoconstriction. Am J Physiol Cell Physiol 302:C931–C940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plomaritas DR, Herbert LM, Yellowhair TR, Resta TC, Gonzalez Bosc LV, Walker BR, Jernigan NL (2014) Chronic hypoxia limits H2O2-induced inhibition of ASIC1-dependent store-operated calcium entry in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 307:L419–L430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, He L, Dinger B, Fidone SJ (2011) Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol 301:L985–L992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shiraishi-Yamaguchi Y, Furuichi T (2007) The Homer family proteins. Genome Biol 8:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Su JJ, Pan H, Zhou HG, Tang YP, Dong Q, Liu JR (2014) Acid-sensing ion channels activation and hypoxia upregulate Homer1a expression. CNS Neurosci Ther 20:264–274

    Article  CAS  PubMed  Google Scholar 

  27. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    Article  CAS  PubMed  Google Scholar 

  28. Mari Y, Katnik C, Cuevas J (2010) ASIC1a channels are activated by endogenous protons during ischemia and contribute to synergistic potentiation of intracellular Ca(2+) overload during ischemia and acidosis. Cell Calcium 48:70–82

    Article  CAS  PubMed  Google Scholar 

  29. Krauson AJ, Rued AC, Carattino MD (2013) Independent contribution of extracellular proton binding sites to ASIC1a activation. J Biol Chem 288:34375–34383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kusama N, Harding AM, Benson CJ (2010) Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a). J Biol Chem 285:17425–17431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kusama N, Gautam M, Harding AM, Snyder PM, Benson CJ (2013) Acid-sensing ion channels (ASICs) are differentially modulated by anions dependent on their subunit composition. Am J Physiol Cell Physiol 304:C89–C101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li T, Yang Y, Canessa CM (2012) Impact of recovery from desensitization on acid-sensing ion channel-1a (ASIC1a) current and response to high frequency stimulation. J Biol Chem 287:40680–40689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678–8689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Staruschenko A, Dorofeeva NA, Bolshakov KV, Stockand JD (2007) Subunit-dependent cadmium and nickel inhibition of acid-sensing ion channels. Dev Neurobiol 67:97–107

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, Yu Y, Xu TL (2007) Modulation of acid-sensing ion channels by Cu(2+) in cultured hypothalamic neurons of the rat. Neuroscience 145:631–641

    Article  CAS  PubMed  Google Scholar 

  36. Inoue K, Branigan D, Xiong ZG (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Q, Inoue K, Wu X, Papasian CJ, Wang JQ, Xiong ZG, Chu XP (2011) Cysteine 149 in the extracellular finger domain of acid-sensing ion channel 1b subunit is critical for zinc-mediated inhibition. Neuroscience 193:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang Q, Zha XM, Chu XP (2012) Inhibition of human acid-sensing ion channel 1b by zinc. Int J Physiol Pathophysiol Pharmacol 4:84–93

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Paukert M, Babini E, Pusch M, Grunder S (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 124:383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Weille J, Bassilana F (2001) Dependence of the acid-sensitive ion channel, ASIC1a, on extracellular Ca(2+) ions. Brain Res 900:277–281

    Article  PubMed  Google Scholar 

  41. Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    Article  CAS  PubMed  Google Scholar 

  42. Babini E, Paukert M, Geisler HS, Grunder S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 277:41597–41603

    Article  CAS  PubMed  Google Scholar 

  43. Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276:35361–35367

    Article  CAS  PubMed  Google Scholar 

  44. Gao J, Wu LJ, Xu L, Xu TL (2004) Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res 1017:197–207

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Duan B, Xu H, Xu L, Xu TL (2006) Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 281:2497–2505

    Article  CAS  PubMed  Google Scholar 

  46. Swandulla D, Armstrong CM (1989) Calcium channel block by cadmium in chicken sensory neurons. Proc Natl Acad Sci USA 86:1736–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baron A, Diochot S, Salinas M, Deval E, Noel J, Lingueglia E (2013) Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 75:187–204

    Article  CAS  PubMed  Google Scholar 

  48. Leng TD, Xiong ZG (2013) The pharmacology and therapeutic potential of small molecule inhibitors of acid-sensing ion channels in stroke intervention. Acta Pharmacol Sin 34:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275:25116–25121

    Article  CAS  PubMed  Google Scholar 

  50. Escoubas P, Bernard C, Lambeau G, Lazdunski M, Darbon H (2003) Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci 12:1332–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 23:1516–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saez NJ, Mobli M, Bieri M, Chassagnon IR, Malde AK, Gamsjaeger R, Mark AE, Gooley PR, Rash LD, King GF (2011) A dynamic pharmacophore drives the interaction between psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol Pharmacol 80:796–808

    Article  CAS  PubMed  Google Scholar 

  53. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay AS, Debayle D, Friend V, Alloui A, Lazdunski M, Lingueglia E (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490:552–555

    Article  CAS  PubMed  Google Scholar 

  54. Salinas M, Rash LD, Baron A, Lambeau G, Escoubas P, Lazdunski M (2006) The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. J Physiol 570:339–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, Schmid G, Hugin D, Pflimlin P, Trube G, Rudolph MG, Hennig M, Ruf A (2012) Structure of the acid-sensing ion channel 1 in complex with the gating modifier psalmotoxin 1. Nat Commun 3:936

    Article  PubMed  CAS  Google Scholar 

  56. Samways DS, Harkins AB, Egan TM (2009) Native and recombinant ASIC1a receptors conduct negligible Ca2+ entry. Cell Calcium 45:319–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sherwood TW, Lee KG, Gormley MG, Askwith CC (2011) Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 31:9723–9734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27:11139–11148

    Article  CAS  PubMed  Google Scholar 

  60. Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gelot A, Cupo A, Zimmer A, Zimmer AM, Eschalier A, Lazdunski M (2007) A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 10:943–945

    Article  CAS  PubMed  Google Scholar 

  61. Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E (2014) X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell 156:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salinas M, Besson T, Delettre Q, Diochot S, Boulakirba S, Douguet D, Lingueglia E (2014) Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J Biol Chem 289:13363–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    Article  CAS  PubMed  Google Scholar 

  64. Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  CAS  PubMed  Google Scholar 

  65. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Article  CAS  PubMed  Google Scholar 

  66. Dube GR, Lehto SG, Breese NM, Baker SJ, Wang X, Matulenko MA, Honore P, Stewart AO, Moreland RB, Brioni JD (2005) Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain 117:88–96

    Article  CAS  PubMed  Google Scholar 

  67. Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, Gelineau-Morel R, Cavey A, Vergo S, Craner M, Fugger L, Rovira A, Jenkinson M, Palace J (2013) Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 136:106–115

    Article  PubMed  Google Scholar 

  68. Alijevic O, Kellenberger S (2012) Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline. J Biol Chem 287:36059–36070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, Liu H, Jiang H, Xu TL (2010) A nonproton ligand sensor in the acid-sensing ion channel. Neuron 68:61–72

    Article  CAS  PubMed  Google Scholar 

  70. Yu Y, Li WG, Chen Z, Cao H, Yang H, Jiang H, Xu TL (2011) Atomic level characterization of the nonproton ligand-sensing domain of ASIC3 channels. J Biol Chem 286:24996–25006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li WG, Yu Y, Zhang ZD, Cao H, Xu TL (2010) ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Molecular pain 6:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sherwood TW, Frey EN, Askwith CC (2012) Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol 303:C699–C710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29:14371–14380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Askwith CC, Cheng C, Ikuma M, Benson C, Price MP, Welsh MJ (2000) Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26:133–141

    Article  CAS  PubMed  Google Scholar 

  75. Xie J, Price MP, Wemmie JA, Askwith CC, Welsh MJ (2003) ASIC3 and ASIC1 mediate FMRFamide-related peptide enhancement of H+-gated currents in cultured dorsal root ganglion neurons. J Neurophysiol 89:2459–2465

    Article  CAS  PubMed  Google Scholar 

  76. Lingueglia E, Deval E, Lazdunski M (2006) FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 27:1138–1152

    Article  CAS  PubMed  Google Scholar 

  77. Aguilar MB, Luna-Ramirez KS, Echeverria D, Falcon A, Olivera BM, Heimer de la Cotera EP, Maillo M (2008) Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks. Peptides 29:186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu TL, Xiong ZG (2007) Dynamic regulation of acid-sensing ion channels by extracellular and intracellular modulators. Curr Med Chem 14:1753–1763

    Article  CAS  PubMed  Google Scholar 

  79. Sherwood TW, Askwith CC (2008) Endogenous arginine-phenylalanine-amide-related peptides alter steady-state desensitization of ASIC1a. J Biol Chem 283:1818–1830

    Article  CAS  PubMed  Google Scholar 

  80. Chai S, Li M, Lan J, Xiong ZG, Saugstad JA, Simon RP (2007) A kinase-anchoring protein 150 and calcineurin are involved in regulation of acid-sensing ion channels ASIC1a and ASIC2a. J Biol Chem 282:22668–22677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leonard AS, Yermolaieva O, Hruska-Hageman A, Askwith CC, Price MP, Wemmie JA, Welsh MJ (2003) cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc Natl Acad Sci USA 100:2029–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun X, Zhao D, Li YL, Sun Y, Lei XH, Zhang JN, Wu MM, Li RY, Zhao ZF, Zhang ZR, Jiang CL (2013) Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep 30:2852–2858

    CAS  PubMed  Google Scholar 

  83. Poirot O, Vukicevic M, Boesch A, Kellenberger S (2004) Selective regulation of acid-sensing ion channel 1 by serine proteases. J Biol Chem 279:38448–38457

    Article  CAS  PubMed  Google Scholar 

  84. Vukicevic M, Weder G, Boillat A, Boesch A, Kellenberger S (2006) Trypsin cleaves acid-sensing ion channel 1a in a domain that is critical for channel gating. J Biol Chem 281:714–722

    Article  CAS  PubMed  Google Scholar 

  85. Marin AN, Prica CM, Amuzescu BP, Neaga EI, Flonta ML (2008) ASIC1a activation by amitriptyline and FMRF-amide is removed by serine proteases. Channels 2:419–428

    Article  PubMed  Google Scholar 

  86. Neaga E, Amuzescu B, Dinu C, Macri B, Pena F, Flonta ML (2005) Extracellular trypsin increases ASIC1a selectivity for monovalent versus divalent cations. J Neurosci Methods 144:241–248

    Article  CAS  PubMed  Google Scholar 

  87. Hecquet C, Tan F, Marcic BM, Erdos EG (2000) Human bradykinin B(2) receptor is activated by kallikrein and other serine proteases. Mol Pharmacol 58:828–836

    CAS  PubMed  Google Scholar 

  88. Chao J, Woodley C, Chao L, Margolius HS (1983) Identification of tissue kallikrein in brain and in the cell-free translation product encoded by brain mRNA. J Biol Chem 258:15173–15178

    CAS  PubMed  Google Scholar 

  89. Gingrich MB, Traynelis SF (2000) Serine proteases and brain damage—Is there a link? Trends Neurosci 23:399–407

    Article  CAS  PubMed  Google Scholar 

  90. Liu L, Zhang R, Liu K, Zhou H, Yang X, Liu X, Tang M, Su J, Dong Q (2009) Tissue kallikrein protects cortical neurons against in vitro ischemia-acidosis/reperfusion-induced injury through the ERK1/2 pathway. Exp Neurol 219:453–465

    Article  CAS  PubMed  Google Scholar 

  91. Su J, Tang Y, Liu L, Zhou H, Dong Q (2011) Regulation of acid-sensing ion channel 1a function by tissue kallikrein may be through channel cleavage. Neurosci Lett 490:46–51

    Article  CAS  PubMed  Google Scholar 

  92. Clark EB, Jovov B, Rooj AK, Fuller CM, Benos DJ (2010) Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matriptase. J Biol Chem 285:27130–27143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andrey F, Tsintsadze T, Volkova T, Lozovaya N, Krishtal O (2005) Acid sensing ionic channels: modulation by redox reagents. Biochim Biophys Acta 1745:1–6

    Article  CAS  PubMed  Google Scholar 

  94. Chu XP, Close N, Saugstad JA, Xiong ZG (2006) ASIC1a-specific modulation of acid-sensing ion channels in mouse cortical neurons by redox reagents. J Neurosci 26:5329–5339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zha XM, Wang R, Collier DM, Snyder PM, Wemmie JA, Welsh MJ (2009) Oxidant regulated inter-subunit disulfide bond formation between ASIC1a subunits. Proc Natl Acad Sci USA 106:3573–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cho JH, Askwith CC (2007) Potentiation of acid-sensing ion channels by sulfhydryl compounds. Am J Physiol Cell Physiol 292:C2161–C2174

    Article  CAS  PubMed  Google Scholar 

  97. Khansari PS, Halliwell RF (2009) Evidence for neuroprotection by the fenamate NSAID, mefenamic acid. Neurochem Int 55:683–688

    Article  CAS  PubMed  Google Scholar 

  98. Wang W, Ye SD, Zhou KQ, Wu LM, Huang YN (2012) High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 90:267–277

    Article  CAS  PubMed  Google Scholar 

  99. Sun X, Jin J, Zhang JG, Qi L, Braun FK, Zhang XD, Xu F (2014) Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs. Acta Biochim Biophys Sin (Shanghai) 46:774–781

    Article  CAS  Google Scholar 

  100. Voilley N (2004) Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs). Curr Drug Targets Inflamm Allergy 3:71–79

    Article  CAS  PubMed  Google Scholar 

  101. Bhattacharya P, Pandey AK, Paul S, Patnaik R (2012) Neuroprotective potential of Piroxicam in cerebral ischemia: an in silico evaluation of the hypothesis to explore its therapeutic efficacy by inhibition of aquaporin-4 and acid sensing ion channel 1a. Med Hypotheses 79:352–357

    Article  CAS  PubMed  Google Scholar 

  102. Gong N, Zhang M, Zhang XB, Chen L, Sun GC, Xu TL (2008) The aspirin metabolite salicylate enhances neuronal excitation in rat hippocampal CA1 area through reducing GABAergic inhibition. Neuropharmacology 54:454–463

    Article  CAS  PubMed  Google Scholar 

  103. Mango D, Barbato G, Piccirilli S, Panico MB, Feligioni M, Schepisi C, Graziani M, Porrini V, Benarese M, Lanzillotta A, Pizzi M, Pieraccini S, Sironi M, Blandini F, Nicoletti F, Mercuri NB, Imbimbo BP, Nistico R (2014) Electrophysiological and metabolic effects of CHF5074 in the hippocampus: protection against in vitro ischemia. Pharmacol Res 81:83–90

    Article  CAS  PubMed  Google Scholar 

  104. Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27:3047–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Izumi M, Ikeuchi M, Ji Q, Tani T (2012) Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci 19:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu WL, Cheng CF, Sun WH, Wong CW, Chen CC (2012) Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther 134:127–138

    Article  CAS  PubMed  Google Scholar 

  107. Lei Z, Li X, Wang G, Fei J, Meng T, Zhang X, Yu J, Yu J, Li J (2014) Inhibition of acid-sensing ion channel currents by propofol in rat dorsal root ganglion neurons. Clin Exp Pharmacol Physiol 41:295–300

    Article  CAS  PubMed  Google Scholar 

  108. Garza A, Lopez-Ramirez O, Vega R, Soto E (2010) The aminoglycosides modulate the acid-sensing ionic channel currents in dorsal root ganglion neurons from the rat. J Pharmacol Exp Ther 332:489–499

    Article  CAS  PubMed  Google Scholar 

  109. Thongon N, Ketkeaw P, Nuekchob C (2014) The roles of acid-sensing ion channel 1a and ovarian cancer G protein-coupled receptor 1 on passive Mg2+ transport across intestinal epithelium-like Caco-2 monolayers. J Physiol Sci 64:129–139

    Article  CAS  PubMed  Google Scholar 

  110. Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT (2002) Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 283:C126–C134

    Article  CAS  PubMed  Google Scholar 

  111. Lilley S, LeTissier P, Robbins J (2004) The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci 24:1013–1022

    Article  CAS  PubMed  Google Scholar 

  112. Tan J, Ye X, Xu Y, Wang H, Sheng M, Wang F (2011) Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis 17:3300–3308

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ettaiche M, Deval E, Cougnon M, Lazdunski M, Voilley N (2006) Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci 26:5800–5809

    Article  CAS  PubMed  Google Scholar 

  114. Li X, Fei J, Lei Z, Liu K, Wu J, Meng T, Yu J, Li J (2014) Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett 228:200–206

    Article  CAS  PubMed  Google Scholar 

  115. Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R (2004) Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 24:1005–1012

    Article  CAS  PubMed  Google Scholar 

  116. Judge SI, Bever CT Jr (2006) Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 111:224–259

    Article  CAS  PubMed  Google Scholar 

  117. Wulff H, Zhorov BS (2008) K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 108:1744–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13:1483–1489

    Article  CAS  PubMed  Google Scholar 

  119. Kweon HJ, Suh BC (2013) Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 46:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Boiko N, Kucher V, Eaton BA, Stockand JD (2013) Inhibition of neuronal degenerin/epithelial Na+ channels by the multiple sclerosis drug 4-aminopyridine. J Biol Chem 288:9418–9427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xiong Z, Liu Y, Hu L, Ma B, Ai Y, Xiong C (2013) A rapid facilitation of acid-sensing ion channels current by corticosterone in cultured hippocampal neurons. Neurochem Res 38:1446–1453

    Article  CAS  PubMed  Google Scholar 

  122. Chai S, Li M, Branigan D, Xiong ZG, Simon RP (2010) Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J Biol Chem 285:13002–13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Duggan A, Garcia-Anoveros J, Corey DP (2002) The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J Biol Chem 277:5203–5208

    Article  CAS  PubMed  Google Scholar 

  124. Hruska-Hageman AM, Wemmie JA, Price MP, Welsh MJ (2002) Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochem J 361:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jin W, Shen C, Jing L, Zha XM, Xia J (2010) PICK1 regulates the trafficking of ASIC1a and acidotoxicity in a BAR domain lipid binding-dependent manner. Mol Brain 3:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Erlendsson S, Rathje M, Heidarsson PO, Poulsen FM, Madsen KL, Teilum K, Gether U (2014) Protein interacting with C-kinase 1 (PICK1) binding promiscuity relies on unconventional PSD-95/discs-large/ZO-1 homology (PDZ) binding modes for nonclass II PDZ ligands. J Biol Chem 289:25327–25340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Joch M, Ase AR, Chen CX, MacDonald PA, Kontogiannea M, Corera AT, Brice A, Seguela P, Fon EA (2007) Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell 18:3105–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hu ZL, Huang C, Fu H, Jin Y, Wu WN, Xiong QJ, Xie N, Long LH, Chen JG, Wang F (2010) Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs. Am J Physiol Cell Physiol 299:C1355–C1362

    Article  CAS  PubMed  Google Scholar 

  129. Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, Cao H, Hansen J, Simon RP, Zhu MX, Xiong ZG, Xu TL (2011) Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 31:2101–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425–427

    Article  CAS  PubMed  Google Scholar 

  131. Kozlenkov A, Lapatsina L, Lewin GR, Smith ES (2014) Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1. J Physiol 592:557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733–750

    Article  CAS  PubMed  Google Scholar 

  133. Kong WJ, Guo CK, Zhang XW, Chen X, Zhang S, Li GQ, Li ZW, Van Cauwenberge P (2007) The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells. Brain Res 1129:110–115

    Article  CAS  PubMed  Google Scholar 

  134. Santos-Torres J, Slimak MA, Auer S, Ibanez-Tallon I (2011) Cross-reactivity of acid-sensing ion channel and Na(+)–H(+) exchanger antagonists with nicotinic acetylcholine receptors. J Physiol 589:5109–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Herrera Y, Katnik C, Rodriguez JD, Hall AA, Willing A, Pennypacker KR, Cuevas J (2008) Sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J Pharmacol Exp Ther 327:491–502

    Article  CAS  PubMed  Google Scholar 

  137. Mari Y, Katnik C, Cuevas J (2014) Sigma-1 receptor inhibition of ASIC1a channels is dependent on a pertussis toxin-sensitive G-protein and an AKAP150/calcineurin complex. Neurochem Res 40:2055–2067

    Article  PubMed  CAS  Google Scholar 

  138. Carnally SM, Johannessen M, Henderson RM, Jackson MB, Edwardson JM (2010) Demonstration of a direct interaction between sigma-1 receptors and acid-sensing ion channels. Biophys J 98:1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen X, Whissell P, Orser BA, MacDonald JF (2011) Functional modifications of acid-sensing ion channels by ligand-gated chloride channels. PLoS ONE 6:e21970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646

    Article  CAS  PubMed  Google Scholar 

  141. Cho JH, Askwith CC (2008) Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice. J Neurophysiol 99:426–441

    Article  CAS  PubMed  Google Scholar 

  142. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187

    Article  CAS  PubMed  Google Scholar 

  143. Starostina E, Xu A, Lin H, Pikielny CW (2009) A Drosophila protein family implicated in pheromone perception is related to Tay–Sachs GM2-activator protein. J Biol Chem 284:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schild L (2004) The epithelial sodium channel: from molecule to disease. Rev Physiol Biochem Pharmacol 151:93–107

    CAS  PubMed  Google Scholar 

  145. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    Article  CAS  PubMed  Google Scholar 

  146. Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R, Chalfie M (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673

    Article  CAS  PubMed  Google Scholar 

  147. Ben-Shahar Y, Lu B, Collier DM, Snyder PM, Schnizler M, Welsh MJ (2010) The Drosophila gene CheB42a is a novel modifier of Deg/ENaC channel function. PLoS ONE 5:e9395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Research Fund for the Back-up Candidates of the Academic and Technical Leaders of Anhui, China (No. 2015H040), the Young top talents Program of Anhui Medical University and Foundation for Distinguished Young Talents in Higher Education of Anhui, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Yinghong Wang and Zaven O’Bryant have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., O’Bryant, Z., Wang, H. et al. Regulating Factors in Acid-Sensing Ion Channel 1a Function. Neurochem Res 41, 631–645 (2016). https://doi.org/10.1007/s11064-015-1768-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1768-x

Keywords

Navigation