Skip to main content

Advertisement

Log in

The Role of 3-O-Sulfogalactosylceramide, Sulfatide, in the Lateral Organization of Myelin Membrane

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sulfatide (3-O-sulfogalactosylceramide, SM4s) was isolated by Thudichum from the human brain in 1884. Together with galactosylceramide, its direct metabolic precursor in the biosynthetic pathway, sulfatide is highly enriched in myelin in the central and peripheral nervous system, and it has been implicated in several aspects of the biology of myelin-forming cells. Studies obtained using galactolipid-deficient mice strongly support the notion that sulfatide plays critical roles in the correct structure and function of myelin membrane. A number of papers are suggesting that these roles are mediated by a specific function of sulfatide in the lateral organization of myelin membrane, thus affecting the sorting, lateral assembly, membrane dynamics and also the function of specific myelin proteins in different substructures of the myelin sheath. The consequences of altered sulfatide metabolism and sulfatide-mediated myelin organization with respect to myelin diseases are still poorly understood, but it’s very likely that sulfatide might represent not only a critical player in the pathogenesis of several diseases, including multiple sclerosis and Alzheimer’s disease, but also a potentially promising therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CGT:

UDP-galactose ceramide galactosyltransferase

CNS:

Central nervous system

CST:

Cerebroside sulfotransferase

DRM:

Detergent-resistant membrane

ECM:

Extracellular matrix

GalCer:

Galactosylceramide

GlcCer:

Glucosylceramide

MAG:

Myelin-associated glycoprotein

MBP:

Myelin basic protein

MOG:

Myelin/oligodendrocyte glycoprotein

MS:

Multiple sclerosis

NCAM:

Neural cell adhesion molecule

NF155:

Neurofascin 155

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PLP:

Proteolipid protein

PNS:

Peripheral nervous system

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

SM:

Sphingomyelin

Sulfatide:

3-O-sulfogalactosylceramide (SM4s)

UDP-Gal:

UDP-galactose

References

  1. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1998) Nomenclature of glycolipids. Carbohydr Res 312:167–175

    Article  Google Scholar 

  2. Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C, Verkleij D, Goebbels S, Edgar J, Merkler D, Lyons DA, Nave KA, Simons M (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156:277–290

    Article  CAS  PubMed  Google Scholar 

  3. Chrast R, Saher G, Nave KA, Verheijen MH (2011) Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J Lipid Res 52:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544

    PubMed  Google Scholar 

  5. Jackman N, Ishii A, Bansal R (2009) Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids. Physiology (Bethesda) 24:290–297

    Article  CAS  Google Scholar 

  6. Taylor CM, Marta CB, Bansal R, Pfeiffer SE (2004) The transport, assembly and function of myelin lipids. Myelin Biol Disord 1:57–88

    CAS  Google Scholar 

  7. Saher G, Quintes S, Nave KA (2011) Cholesterol: a novel regulatory role in myelin formation. Neuroscientist 17:79–93

    Article  CAS  PubMed  Google Scholar 

  8. Stoffel W, Bosio A (1997) Myelin glycolipids and their functions. Curr Opin Neurobiol 7:654–661

    Article  CAS  PubMed  Google Scholar 

  9. Eckhardt M (2008) The role and metabolism of sulfatide in the nervous system. Mol Neurobiol 37:93–103

    Article  CAS  PubMed  Google Scholar 

  10. Honke K (2013) Biosynthesis and biological function of sulfoglycolipids. Proc Jpn Acad Ser B Phys Biol Sci 89:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21

    CAS  PubMed  Google Scholar 

  12. Sonnino S, Prinetti A (2010) Lipids and membrane lateral organization. Front Physiol 1:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maggio B (1997) Molecular interactions of the major myelin glycosphingolipids and myelin basic protein in model membranes. Neurochem Res 22:475–481

    Article  CAS  PubMed  Google Scholar 

  14. Viani P, Marchesini S, Cervato G, Cestaro B (1986) Calorimetric properties of mixtures of distearoylphosphatidylcholine and sulfatides with definite fatty acid composition. Biochem Int 12:125–135

    CAS  PubMed  Google Scholar 

  15. Boggs JM, Mulholland D, Koshy KM (1990) Mixtures of semisynthetic species of cerebroside sulfate with dipalmitoyl phosphatidylcholine. Thermotropic phase behavior and permeability. Biochem Cell Biol 68:70–82

    Article  CAS  PubMed  Google Scholar 

  16. Boggs JM, Koshy KM, Rangaraj G (1993) Thermotropic phase behavior of mixtures of long chain fatty acid species of cerebroside sulfate with different fatty acid chain length species of phospholipid. Biochemistry 32:8908–8922

    Article  CAS  PubMed  Google Scholar 

  17. Ruettinger A, Kiselev MA, Hauss T, Dante S, Balagurov AM, Neubert RH (2008) Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study. Eur Biophys J 37:759–771

    Article  CAS  PubMed  Google Scholar 

  18. Grant CW, Mehlhorn IE, Florio E, Barber KR (1987) A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim Biophys Acta 902:169–177

    Article  CAS  PubMed  Google Scholar 

  19. Boggs JM, Koshy KM (1994) Do the long fatty acid chains of sphingolipids interdigitate across the center of a bilayer of shorter chain symmetric phospholipids? Biochim Biophys Acta 1189:233–241

    Article  CAS  PubMed  Google Scholar 

  20. Rintoul DA, Welti R (1989) Thermotropic behavior of mixtures of glycosphingolipids and phosphatidylcholine: effect of monovalent cations on sulfatide and galactosylceramide. Biochemistry 28:26–31

    Article  CAS  PubMed  Google Scholar 

  21. Maggio B, Montich GG, Cumar FA (1988) Surface topography of sulfatide and gangliosides in unilamellar vesicles of dipalmitoylphosphatidylcholine. Chem Phys Lipids 46:137–146

    Article  CAS  PubMed  Google Scholar 

  22. Wu X, Li QT (1999) Ca2+-induced fusion of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles. J Lipid Res 40:1254–1262

    CAS  PubMed  Google Scholar 

  23. Wu X, Li QT (1999) Hydration and stability of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles. Biochim Biophys Acta 1416:285–294

    Article  CAS  PubMed  Google Scholar 

  24. Wu X, Lee KH, Li QT (1996) Stability and pH sensitivity of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles. Biochim Biophys Acta 1284:13–19

    Article  PubMed  Google Scholar 

  25. Viani P, Cervato G, Gatti P, Cestaro B (1992) Calcitonin-induced changes in the organization of sulfatide-containing membranes. Biochim Biophys Acta 1106:77–84

    Article  CAS  PubMed  Google Scholar 

  26. Bjorkqvist YJ, Nybond S, Nyholm TK, Slotte JP, Ramstedt B (2008) N-palmitoyl-sulfatide participates in lateral domain formation in complex lipid bilayers. Biochim Biophys Acta 1778:954–962

    Article  CAS  PubMed  Google Scholar 

  27. Hao C, Sun R, Zhang J, Chang Y, Niu C (2009) Behavior of sulfatide/cholesterol mixed monolayers at the air/water interface. Colloids Surf B Biointerfaces 69:201–206

    Article  CAS  PubMed  Google Scholar 

  28. Stewart RJ, Boggs JM (1990) Dependence of the surface expression of the glycolipid cerebroside sulfate on its lipid environment: comparison of sphingomyelin and phosphatidylcholine. Biochemistry 29:3644–3653

    Article  CAS  PubMed  Google Scholar 

  29. Maggio B, Sturtevant JM, Yu RK (1987) Effect of myelin basic protein on the thermotropic behavior of aqueous dispersions of neutral and anionic glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. J Biol Chem 262:2652–2659

    CAS  PubMed  Google Scholar 

  30. Simons M, Nave KA (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a020479

    PubMed  Google Scholar 

  31. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7(7):a020487. doi:10.1101/cshperspect.a020487

    Article  PubMed  Google Scholar 

  32. Pernber Z, Molander-Melin M, Berthold CH, Hansson E, Fredman P (2002) Expression of the myelin and oligodendrocyte progenitor marker sulfatide in neurons and astrocytes of adult rat brain. J Neurosci Res 69:86–93

    Article  CAS  PubMed  Google Scholar 

  33. Berntson Z, Hansson E, Ronnback L, Fredman P (1998) Intracellular sulfatide expression in a subpopulation of astrocytes in primary cultures. J Neurosci Res 52:559–568

    Article  CAS  PubMed  Google Scholar 

  34. Isaac G, Pernber Z, Gieselmann V, Hansson E, Bergquist J, Mansson JE (2006) Sulfatide with short fatty acid dominates in astrocytes and neurons. FEBS J 273:1782–1790

    Article  CAS  PubMed  Google Scholar 

  35. Yuki D, Sugiura Y, Zaima N, Akatsu H, Hashizume Y, Yamamoto T, Fujiwara M, Sugiyama K, Setou M (2011) Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience 193:44–53

    Article  CAS  PubMed  Google Scholar 

  36. De Haas CG, Lopes-Cardozo M (1995) Hydroxy- and non-hydroxy-galactolipids in developing rat CNS. Int J Dev Neurosci 13:447–454

    Article  PubMed  Google Scholar 

  37. Pernber Z, Richter K, Mansson JE, Nygren H (2007) Sulfatide with different fatty acids has unique distributions in cerebellum as imaged by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Biochim Biophys Acta 1771:202–209

    Article  CAS  PubMed  Google Scholar 

  38. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  CAS  PubMed  Google Scholar 

  39. Ishizuka I, Inomata M (1979) Sulphated glycoglycerolipids in rat brain: decrease and disappearance after developmental age. J Neurochem 33:387–388

    Article  CAS  PubMed  Google Scholar 

  40. Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman SH, Silberberg DH, Gregson NA, Leibowitz S, Kennedy MC (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274:813–816

    CAS  PubMed  Google Scholar 

  41. Hardy R, Reynolds R (1991) Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development 111:1061–1080

    CAS  PubMed  Google Scholar 

  42. Poduslo SE, Miller K (1985) Levels of sulfatide synthesis distinguish oligodendroglia in different stages of maturation. Neurochem Res 10:1285–1297

    Article  CAS  PubMed  Google Scholar 

  43. Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24:548–557

    Article  CAS  PubMed  Google Scholar 

  44. Dyer CA, Benjamins JA (1988) Antibody to galactocerebroside alters organization of oligodendroglial membrane sheets in culture. J Neurosci 8:4307–4318

    CAS  PubMed  Google Scholar 

  45. Dyer CA, Benjamins JA (1989) Organization of oligodendroglial membrane sheets: II. Galactocerebroside:antibody interactions signal changes in cytoskeleton and myelin basic protein. J Neurosci Res 24:212–221

    Article  CAS  PubMed  Google Scholar 

  46. Dyer CA, Benjamins JA (1990) Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol 111:625–633

    Article  CAS  PubMed  Google Scholar 

  47. Bansal R, Gard AL, Pfeiffer SE (1988) Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid. J Neurosci Res 21:260–267

    Article  CAS  PubMed  Google Scholar 

  48. Bansal R, Pfeiffer SE (1989) Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc Natl Acad Sci USA 86:6181–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bansal R, Winkler S, Bheddah S (1999) Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19:7913–7924

    CAS  PubMed  Google Scholar 

  50. Owens GC, Bunge RP (1990) Schwann cells depleted of galactocerebroside express myelin-associated glycoprotein and initiate but do not continue the process of myelination. Glia 3:118–124

    Article  CAS  PubMed  Google Scholar 

  51. Rosenbluth J, Moon D (2003) Dysmyelination induced in vitro by IgM antisulfatide and antigalactocerebroside monoclonal antibodies. J Neurosci Res 71:104–109

    Article  CAS  PubMed  Google Scholar 

  52. Svennerholm L, Bostrom K, Jungbjer B (1997) Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol 94:345–352

    Article  CAS  PubMed  Google Scholar 

  53. Crivello NA, Casseus SL, Peterson JW, Smith DE, Booth SL (2010) Age- and brain region-specific effects of dietary vitamin K on myelin sulfatides. J Nutr Biochem 21:1083–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201

    Article  CAS  PubMed  Google Scholar 

  55. Mitew S, Kirkcaldie MT, Halliday GM, Shepherd CE, Vickers JC, Dickson TC (2010) Focal demyelination in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol 119:567–577

    Article  CAS  PubMed  Google Scholar 

  56. Marbois BN, Faull KF, Fluharty AL, Raval-Fernandes S, Rome LH (2000) Analysis of sulfatide from rat cerebellum and multiple sclerosis white matter by negative ion electrospray mass spectrometry. Biochim Biophys Acta 1484:59–70

    Article  CAS  PubMed  Google Scholar 

  57. Yahara S, Kawamura N, Kishimoto Y, Saida T, Tourtellotte WW (1982) A change in the cerebrosides and sulfatides in a demyelinating nervous system. Development of the methodology and study of multiple sclerosis and Wallerian degeneration. J Neurol Sci 54:303–315

    Article  CAS  PubMed  Google Scholar 

  58. Moyano AL, Pituch K, Li G, van Breemen R, Mansson JE, Givogri MI (2013) Levels of plasma sulfatides C18: 0 and C24: 1 correlate with disease status in relapsing-remitting multiple sclerosis. J Neurochem 127:600–604

    Article  CAS  PubMed  Google Scholar 

  59. Haghighi S, Lekman A, Nilsson S, Blomqvist M, Andersen O (2012) Myelin glycosphingolipid immunoreactivity and CSF levels in multiple sclerosis. Acta Neurol Scand 125:64–70

    Article  CAS  PubMed  Google Scholar 

  60. Haghighi S, Lekman A, Nilsson S, Blomqvist M, Andersen O (2013) Increased CSF sulfatide levels and serum glycosphingolipid antibody levels in healthy siblings of multiple sclerosis patients. J Neurol Sci 326:35–39

    Article  CAS  PubMed  Google Scholar 

  61. Halder RC, Jahng A, Maricic I, Kumar V (2007) Mini review: immune response to myelin-derived sulfatide and CNS-demyelination. Neurochem Res 32:257–262

    Article  CAS  PubMed  Google Scholar 

  62. Jeon SB, Yoon HJ, Park SH, Kim IH, Park EJ (2008) Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. J Immunol 181:8077–8087

    Article  CAS  PubMed  Google Scholar 

  63. Maricic I, Halder R, Bischof F, Kumar V (2014) Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. J Immunol 193:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mycko MP, Sliwinska B, Cichalewska M, Cwiklinska H, Raine CS, Selmaj KW (2014) Brain glycolipids suppress T helper cells and inhibit autoimmune demyelination. J Neurosci 34:8646–8658

    Article  PubMed  CAS  Google Scholar 

  65. Podbielska M, Hogan EL (2009) Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 15:1011–1029

    Article  CAS  PubMed  Google Scholar 

  66. Ilyas AA, Chen ZW, Cook SD (2003) Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J Neuroimmunol 139:76–80

    Article  CAS  PubMed  Google Scholar 

  67. Don AS, Hsiao JH, Bleasel JM, Couttas TA, Halliday GM, Kim WS (2014) Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun 2:150

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schulte S, Stoffel W (1993) Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc Natl Acad Sci USA 90:10265–10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stahl N, Jurevics H, Morell P, Suzuki K, Popko B (1994) Isolation, characterization, and expression of cDNA clones that encode rat UDP-galactose: ceramide galactosyltransferase. J Neurosci Res 38:234–242

    Article  CAS  PubMed  Google Scholar 

  70. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    Article  CAS  PubMed  Google Scholar 

  71. Saadat L, Dupree JL, Kilkus J, Han X, Traka M, Proia RL, Dawson G, Popko B (2010) Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58:391–398

    Article  PubMed  PubMed Central  Google Scholar 

  72. Meixner M, Jungnickel J, Grothe C, Gieselmann V, Eckhardt M (2011) Myelination in the absence of UDP-galactose:ceramide galactosyl-transferase and fatty acid 2-hydroxylase. BMC Neurosci 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dupree JL, Coetzee T, Suzuki K, Popko B (1998) Myelin abnormalities in mice deficient in galactocerebroside and sulfatide. J Neurocytol 27:649–659

    Article  CAS  PubMed  Google Scholar 

  74. Bosio A, Binczek E, Haupt WF, Stoffel W (1998) Composition and biophysical properties of myelin lipid define the neurological defects in galactocerebroside- and sulfatide-deficient mice. J Neurochem 70:308–315

    Article  CAS  PubMed  Google Scholar 

  75. Dupree JL, Suzuki K, Popko B (1998) Galactolipids in the formation and function of the myelin sheath. Microsc Res Tech 41:431–440

    Article  CAS  PubMed  Google Scholar 

  76. Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573:406–413

    Article  CAS  PubMed  Google Scholar 

  77. Dupree JL, Coetzee T, Blight A, Suzuki K, Popko B (1998) Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J Neurosci 18:1642–1649

    CAS  PubMed  Google Scholar 

  78. Dupree JL, Popko B (1999) Genetic dissection of myelin galactolipid function. J Neurocytol 28:271–279

    Article  CAS  PubMed  Google Scholar 

  79. Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci USA 99:4227–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang C, Wang M, Zhou Y, Dupree JL, Han X (2014) Alterations in mouse brain lipidome after disruption of CST gene: a lipidomics study. Mol Neurobiol 50:88–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53:372–381

    Article  CAS  PubMed  Google Scholar 

  82. Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22:6507–6514

    CAS  PubMed  Google Scholar 

  83. Hoshi T, Suzuki A, Hayashi S, Tohyama K, Hayashi A, Yamaguchi Y, Takeuchi K, Baba H (2007) Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves. Glia 55:584–594

    Article  PubMed  Google Scholar 

  84. Hayashi A, Kaneko N, Tomihira C, Baba H (2013) Sulfatide decrease in myelin influences formation of the paranodal axo-glial junction and conduction velocity in the sciatic nerve. Glia 61:466–474

    Article  PubMed  Google Scholar 

  85. Marcus J, Dupree JL, Popko B (2000) Effects of galactolipid elimination on oligodendrocyte development and myelination. Glia 30:319–328

    Article  CAS  PubMed  Google Scholar 

  86. Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y (2004) Sulfatide is a negative regulator of oligodendrocyte differentiation: development in sulfatide-null mice. Glia 45:269–277

    Article  PubMed  Google Scholar 

  87. Shroff SM, Pomicter AD, Chow WN, Fox MA, Colello RJ, Henderson SC, Dupree JL (2009) Adult CST-null mice maintain an increased number of oligodendrocytes. J Neurosci Res 87:3403–3414

    Article  CAS  PubMed  Google Scholar 

  88. Kajigaya H, Tanaka KF, Hayashi A, Suzuki A, Ishibashi T, Ikenaka K, Baba H (2011) Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice. Proc Jpn Acad Ser B Phys Biol Sci 87:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gielen E, Baron W, Vandeven M, Steels P, Hoekstra D, Ameloot M (2006) Rafts in oligodendrocytes: evidence and structure-function relationship. Glia 54:499–512

    Article  PubMed  Google Scholar 

  90. Sonnino S, Prinetti A (2008) Membrane lipid domains and membrane lipid domain preparations: are they the same thing? Trends Glycosci Glycotechnol 20:315–340

    Article  CAS  Google Scholar 

  91. Kramer EM, Koch T, Niehaus A, Trotter J (1997) Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes. J Biol Chem 272:8937–8945

    Article  CAS  PubMed  Google Scholar 

  92. Kramer EM, Klein C, Koch T, Boytinck M, Trotter J (1999) Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 274:29042–29049

    Article  CAS  PubMed  Google Scholar 

  93. Kim T, Pfeiffer SE (1999) Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the non-compact myelin proteins CNP and MOG. J Neurocytol 28:281–293

    Article  PubMed  Google Scholar 

  94. Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taylor CM, Coetzee T, Pfeiffer SE (2002) Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 81:993–1004

    Article  CAS  PubMed  Google Scholar 

  96. Marta CB, Taylor CM, Coetzee T, Kim T, Winkler S, Bansal R, Pfeiffer SE (2003) Antibody cross-linking of myelin oligodendrocyte glycoprotein leads to its rapid repartitioning into detergent-insoluble fractions, and altered protein phosphorylation and cell morphology. J Neurosci 23:5461–5471

    CAS  PubMed  Google Scholar 

  97. Arvanitis DN, Min W, Gong Y, Heng YM, Boggs JM (2005) Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin. J Neurochem 94:1696–1710

    Article  CAS  PubMed  Google Scholar 

  98. Pomicter AD, Deloyht JM, Hackett AR, Purdie N, Sato-Bigbee C, Henderson SC, Dupree JL (2013) Nfasc155H and MAG are specifically susceptible to detergent extraction in the absence of the myelin sphingolipid sulfatide. Neurochem Res 38:2490–2502

    Article  CAS  PubMed  Google Scholar 

  99. Ozgen H, Schrimpf W, Hendrix J, de Jonge JC, Lamb DC, Hoekstra D, Kahya N, Baron W (2014) The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix. PLoS One 9:e101834

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moyano AL, Li G, Lopez-Rosas A, Mansson JE, van Breemen RB, Givogri MI (2014) Distribution of C16:0, C18:0, C24:1, and C24:0 sulfatides in central nervous system lipid rafts by quantitative ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Biochem 467:31–39

    Article  CAS  PubMed  Google Scholar 

  101. DeBruin LS, Haines JD, Bienzle D, Harauz G (2006) Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosis. Biochem Cell Biol 84:993–1005

    Article  CAS  PubMed  Google Scholar 

  102. Debruin LS, Harauz G (2007) White matter rafting—membrane microdomains in myelin. Neurochem Res 32:213–228

    Article  CAS  PubMed  Google Scholar 

  103. DeBruin LS, Haines JD, Wellhauser LA, Radeva G, Schonmann V, Bienzle D, Harauz G (2005) Developmental partitioning of myelin basic protein into membrane microdomains. J Neurosci Res 80:211–225

    Article  CAS  PubMed  Google Scholar 

  104. Mehta NR, Lopez PH, Vyas AA, Schnaar RL (2007) Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem 282:27875–27886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195:208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schnaar RL, Lopez PH (2009) Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 87:3267–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schafer DP, Bansal R, Hedstrom KL, Pfeiffer SE, Rasband MN (2004) Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J Neurosci 24:3176–3185

    Article  CAS  PubMed  Google Scholar 

  109. Baron W, Bijlard M, Nomden A, de Jonge JC, Teunissen CE, Hoekstra D (2014) Sulfatide-mediated control of extracellular matrix-dependent oligodendrocyte maturation. Glia 62:927–942

    Article  PubMed  Google Scholar 

  110. Brown MC, Besio Moreno M, Bongarzone ER, Cohen PD, Soto EF, Pasquini JM (1993) Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J Neurosci Res 35:402–408

    Article  CAS  PubMed  Google Scholar 

  111. Baron W, Ozgen H, Klunder B, de Jonge JC, Nomden A, Plat A, Trifilieff E, de Vries H, Hoekstra D (2015) The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: involvement of sulfatide. Mol Cell Biol 35(1):288–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Rodriguez M, Warrington AE, Pease LR (2009) Invited article: human natural autoantibodies in the treatment of neurologic disease. Neurology 72:1269–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M (2007) A recombinant human IgM promotes myelin repair after a single, very low dose. J Neurosci Res 85:967–976

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti.

Additional information

Ganglioside and glycosphingolipid nomenclature is in accordance with the IUPAC–IUBMB recommendations [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grassi, S., Prioni, S., Cabitta, L. et al. The Role of 3-O-Sulfogalactosylceramide, Sulfatide, in the Lateral Organization of Myelin Membrane. Neurochem Res 41, 130–143 (2016). https://doi.org/10.1007/s11064-015-1747-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1747-2

Keywords

Navigation